Immature Green Apple Detection and Sizing in Commercial Orchards Using YOLOv8 and Shape Fitting Techniques

尺寸 计算机科学 化学 有机化学
作者
Ranjan Sapkota,Dawood Ahmed,Martin Churuvija,Manoj Karkee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 43436-43452 被引量:11
标识
DOI:10.1109/access.2024.3378261
摘要

Detecting and estimating size of apples during the early stages of growth is crucial for predicting yield, pest management, and making informed decisions related to crop-load management, harvest and post-harvest logistics, and marketing. Traditional fruit size measurement methods are laborious and time-consuming. This study employs the state-of-the-art YOLOv8 object detection and instance segmentation algorithm in conjunction with geometric shape fitting techniques on 3D point cloud data to accurately determine the size of immature green apples (or fruitlet) in a commercial orchard environment. The methodology utilized two RGB-D sensors: Intel RealSense D435i and Microsoft Azure Kinect DK. Notably, the YOLOv8 instance segmentation models exhibited proficiency in immature green apple detection, with the YOLOv8m-seg model achieving the highest AP@0.5 and AP@0.75 scores of 0.94 and 0.91, respectively. Using the ellipsoid fitting technique on images from the Azure Kinect, we achieved an RMSE of 2.35 mm, MAE of 1.66 mm, MAPE of 6.15 mm, and an R-squared value of 0.9 in estimating the size of apple fruitlets. Challenges such as partial occlusion caused some error in accurately delineating and sizing green apples using the YOLOv8-based segmentation technique, particularly in fruit clusters. In a comparison with 102 outdoor samples, the size estimation technique performed better on the images acquired with Microsoft Azure Kinect than the same with Intel Realsense D435i. This superiority is evident from the metrics: the RMSE values (2.35 mm for Azure Kinect vs. 9.65 mm for Realsense D435i), MAE values (1.66 mm for Azure Kinect vs. 7.8 mm for Realsense D435i), and the R-squared values (0.9 for Azure Kinect vs. 0.77 for Realsense D435i). This study demonstrated the feasibility of accurately sizing immature green fruit in early growth stages using the combined 3D sensing and shape-fitting technique, which shows promise for improved precision agricultural operations such as optimal crop-load management in orchards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AOI0504完成签到,获得积分10
刚刚
墨染完成签到,获得积分10
刚刚
薛厌完成签到,获得积分10
1秒前
小橙子发布了新的文献求助10
2秒前
javalin完成签到,获得积分10
2秒前
LiShin发布了新的文献求助10
2秒前
2秒前
2秒前
叫滚滚发布了新的文献求助10
3秒前
坚强的樱发布了新的文献求助10
3秒前
桐桐应助zmmmm采纳,获得10
3秒前
5秒前
小敦发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
翔哥发布了新的文献求助10
6秒前
阿航完成签到,获得积分10
6秒前
情怀应助Mrrr采纳,获得10
7秒前
7秒前
调研昵称发布了新的文献求助10
8秒前
淡定念波完成签到,获得积分10
8秒前
8秒前
卷卷王发布了新的文献求助10
9秒前
9秒前
天天快乐应助phz采纳,获得10
10秒前
lili完成签到,获得积分10
11秒前
sakurai应助通~采纳,获得10
11秒前
11秒前
11秒前
柴火烧叽发布了新的文献求助10
12秒前
香蕉觅云应助内向秋寒采纳,获得10
12秒前
13秒前
13秒前
zyh完成签到,获得积分10
13秒前
13秒前
小马甲应助Anxinxin采纳,获得10
13秒前
ww发布了新的文献求助10
13秒前
这小猪真帅完成签到,获得积分10
14秒前
Hulda完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794