Immature Green Apple Detection and Sizing in Commercial Orchards Using YOLOv8 and Shape Fitting Techniques

尺寸 计算机科学 化学 有机化学
作者
Ranjan Sapkota,Dawood Ahmed,Martin Churuvija,Manoj Karkee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 43436-43452 被引量:11
标识
DOI:10.1109/access.2024.3378261
摘要

Detecting and estimating size of apples during the early stages of growth is crucial for predicting yield, pest management, and making informed decisions related to crop-load management, harvest and post-harvest logistics, and marketing. Traditional fruit size measurement methods are laborious and time-consuming. This study employs the state-of-the-art YOLOv8 object detection and instance segmentation algorithm in conjunction with geometric shape fitting techniques on 3D point cloud data to accurately determine the size of immature green apples (or fruitlet) in a commercial orchard environment. The methodology utilized two RGB-D sensors: Intel RealSense D435i and Microsoft Azure Kinect DK. Notably, the YOLOv8 instance segmentation models exhibited proficiency in immature green apple detection, with the YOLOv8m-seg model achieving the highest AP@0.5 and AP@0.75 scores of 0.94 and 0.91, respectively. Using the ellipsoid fitting technique on images from the Azure Kinect, we achieved an RMSE of 2.35 mm, MAE of 1.66 mm, MAPE of 6.15 mm, and an R-squared value of 0.9 in estimating the size of apple fruitlets. Challenges such as partial occlusion caused some error in accurately delineating and sizing green apples using the YOLOv8-based segmentation technique, particularly in fruit clusters. In a comparison with 102 outdoor samples, the size estimation technique performed better on the images acquired with Microsoft Azure Kinect than the same with Intel Realsense D435i. This superiority is evident from the metrics: the RMSE values (2.35 mm for Azure Kinect vs. 9.65 mm for Realsense D435i), MAE values (1.66 mm for Azure Kinect vs. 7.8 mm for Realsense D435i), and the R-squared values (0.9 for Azure Kinect vs. 0.77 for Realsense D435i). This study demonstrated the feasibility of accurately sizing immature green fruit in early growth stages using the combined 3D sensing and shape-fitting technique, which shows promise for improved precision agricultural operations such as optimal crop-load management in orchards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ayn发布了新的文献求助10
刚刚
Orange应助昏睡的道消采纳,获得10
刚刚
gaga完成签到,获得积分10
刚刚
1秒前
chlachj发布了新的文献求助10
1秒前
szk完成签到,获得积分10
1秒前
2秒前
jiangzong完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
豆沙包公主完成签到,获得积分10
3秒前
诚心盼海完成签到,获得积分20
3秒前
缓慢易云完成签到,获得积分10
3秒前
彭于晏完成签到,获得积分0
3秒前
Ava应助WENc采纳,获得10
3秒前
lq完成签到,获得积分10
3秒前
细腻无春完成签到 ,获得积分10
3秒前
4秒前
小孩完成签到,获得积分10
4秒前
DDDSK完成签到,获得积分20
4秒前
铅笔发布了新的文献求助10
4秒前
嘻嘻发布了新的文献求助10
4秒前
沏茶发布了新的文献求助10
5秒前
冷静寒风完成签到,获得积分10
5秒前
5秒前
葡萄糖发布了新的文献求助10
5秒前
5秒前
kkl关注了科研通微信公众号
5秒前
py发布了新的文献求助10
5秒前
航的完成签到,获得积分10
5秒前
6秒前
Ava应助致语采纳,获得10
6秒前
cheng完成签到,获得积分10
6秒前
雨田发布了新的文献求助10
6秒前
现代萃完成签到,获得积分10
9秒前
9秒前
缓慢易云发布了新的文献求助10
9秒前
牛马小梁完成签到,获得积分10
9秒前
美好斓发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676