Heterogeneous Social Event Detection via Hyperbolic Graph Representations

计算机科学 图形 事件(粒子物理) 理论计算机科学 量子力学 物理
作者
Zitai Qiu,Jia Wu,Jian Yang,Xing Su,Charų C. Aggarwal
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tbdata.2024.3381017
摘要

Social events reflect the dynamics of society and, here, natural disasters and emergencies receive significant attention.The timely detection of these events can provide organisations and individuals with valuable information to reduce or avoid losses.However, due to the complex heterogeneities of the content and structure of social media, existing models can only learn limited information; large amounts of semantic and structural information are ignored.In addition, due to high labour costs, it is rare for social media datasets to include high-quality labels, which also makes it challenging for models to learn information from social media.In this study, we propose two hyperbolic graph representation-based methods for detecting social events from heterogeneous social media environments.For cases where a dataset has labels, we designed a Hyperbolic Social Event Detection (HSED) model that converts complex social information into a unified social message graph.This model addresses the heterogeneity of social media, and, with this graph, the information in social media can be used to capture structural information based on the properties of hyperbolic space.For cases where the dataset is unlabelled, we designed an Unsupervised Hyperbolic Social Event Detection (UHSED).This model is based on the HSED model but includes graph contrastive learning to make it work in unlabelled scenarios.Extensive experiments demonstrate the superiority of the proposed approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎乐完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
wenge发布了新的文献求助10
3秒前
科研顺利发布了新的文献求助10
3秒前
3秒前
trayheep发布了新的文献求助10
3秒前
科研通AI5应助jing采纳,获得10
3秒前
Owen应助自然的宝贝采纳,获得10
3秒前
4秒前
SciGPT应助无名采纳,获得10
4秒前
Silole发布了新的文献求助10
5秒前
5秒前
5秒前
特例独行的jian完成签到,获得积分10
6秒前
6秒前
6秒前
Webridging完成签到,获得积分10
7秒前
英勇的竺发布了新的文献求助20
7秒前
王献杰发布了新的文献求助10
8秒前
8秒前
王润发布了新的文献求助10
8秒前
8秒前
gaga发布了新的文献求助30
8秒前
隐形曼青应助carrieschen采纳,获得10
9秒前
markerfxq发布了新的文献求助10
9秒前
宽容的养鱼人完成签到,获得积分10
10秒前
10秒前
研友_LwlAgn发布了新的文献求助10
11秒前
深情安青应助小羊羊采纳,获得10
11秒前
何处得秋霜完成签到,获得积分10
11秒前
小巧凝丹完成签到,获得积分10
11秒前
12秒前
小浣熊发布了新的文献求助10
12秒前
junfeiwang发布了新的文献求助10
12秒前
小二郎应助张钰婷啦啦啦采纳,获得10
13秒前
秦摆烂发布了新的文献求助10
13秒前
caixiayin发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487862
求助须知:如何正确求助?哪些是违规求助? 3075753
关于积分的说明 9141978
捐赠科研通 2767984
什么是DOI,文献DOI怎么找? 1518876
邀请新用户注册赠送积分活动 703377
科研通“疑难数据库(出版商)”最低求助积分说明 701817