Metalantis: A Comprehensive Underwater Image Enhancement Framework

水下 计算机科学 遥感 图像增强 计算机视觉 图像(数学) 人工智能 地质学 海洋学
作者
Hao Wang,Weibo Zhang,Lu Bai,Peng Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:71
标识
DOI:10.1109/tgrs.2024.3387722
摘要

Underwater images normally suffer from visual degradation issues such as color deviations, low contrasts, and blurred details. Recently, numerous underwater image enhancement algorithms have been proposed to address these issues. However, constrained by underwater conditions, acquiring non-underwater images and depth maps for underwater images is often challenging. This limitation significantly hampers the performance of data driven-based methods and physical model-based methods. Additionally, existing physical model-based methods typically require manual parameter settings, which tend to be bruteforce and insufficient to effectively address the diverse underwater scenes. To overcome these limitations, this paper presents a comprehensive underwater image enhancement framework comprising three phases: metamergence (i.e., meta submergence), metalief (i.e., meta relief), and metaebb (i.e., meta ebb). These phases are dedicated to virtual underwater image synthesis, underwater image depth map estimation, and the configuration of state-of-the-art physical models for underwater image enhancement by reinforcement learning, separately. While the three phases are trained separately, the former phase provides the necessary data for training the latter. We refer to the overall three phases as metalantis (i.e., meta Atlantis) because its training processes, involving variations from submergence via relief to ebb over indoor scenes, mimic the virtual variations of Atlantis. The metalantis framework empowers state-of-the-art physical models of underwater imaging through reinforcement learning with virtually generated data. The well-trained metalantis framework can take an underwater image as the sole input, process it into virtual representations, and finally enhance it. Comprehensive qualitative and quantitative empirical evaluations validate that our metalantis framework outperforms state-of-the-art underwater image enhancement methods. We release our code at https://gitee.com/wanghaoupc/Metalantis_UIE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹子快跑发布了新的文献求助10
刚刚
LZY319发布了新的文献求助30
刚刚
稀松完成签到,获得积分0
1秒前
Adam罗完成签到 ,获得积分10
2秒前
2秒前
2秒前
vdfr发布了新的文献求助10
2秒前
琳666发布了新的文献求助10
3秒前
3秒前
3秒前
TTYYI完成签到 ,获得积分10
3秒前
科研通AI6应助小立采纳,获得10
3秒前
英姑应助整齐醉冬采纳,获得10
3秒前
着急的罡发布了新的文献求助10
4秒前
5秒前
Tian发布了新的文献求助10
6秒前
天气好的话完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
咖褐完成签到 ,获得积分10
8秒前
mieyy完成签到,获得积分10
9秒前
Anna发布了新的文献求助10
9秒前
思源应助u深度采纳,获得10
9秒前
wangxy发布了新的文献求助10
9秒前
10秒前
情怀应助20074010181采纳,获得10
10秒前
科研通AI6应助着急的罡采纳,获得10
11秒前
轨迹应助严泠采纳,获得150
12秒前
单杨完成签到,获得积分10
12秒前
小洋完成签到 ,获得积分10
13秒前
紫津完成签到,获得积分10
13秒前
Jasper应助如意的小丸子采纳,获得10
13秒前
13秒前
尘中磨镜人完成签到,获得积分10
14秒前
lmj717完成签到,获得积分10
15秒前
大个应助filwasb采纳,获得10
15秒前
16秒前
Liu发布了新的文献求助10
16秒前
16秒前
今夕何夕完成签到,获得积分10
17秒前
一木张发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488