Molecular Understanding of the Distinction between Adhesive Failure and Cohesive Failure in Adhesive Bonds with Epoxy Resin Adhesives

胶粘剂 环氧树脂 材料科学 复合材料 分子间力 单层 分子 粘接 化学 图层(电子) 纳米技术 有机化学
作者
Yuta Tsuji
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (14): 7479-7491 被引量:1
标识
DOI:10.1021/acs.langmuir.3c04015
摘要

In the development of adhesives, an understanding of the fracture behavior of the bonded joints is inevitable. Two typical failure modes are known: adhesive failure and cohesive failure. However, a molecular understanding of the cohesive failure process is not as advanced as that of the adhesive failure process. In this study, research was developed to establish a molecular understanding of cohesive failure using the example of a system in which epoxy resin is bonded to a hydroxyl-terminated self-assembled monolayer (SAM) surface. Adhesive failure was modeled as a process in which an epoxy molecule is pulled away from the SAM surface. Cohesive failure, on the other hand, was modeled as the process of an epoxy molecule separating from another epoxy molecule on the SAM surface or breaking of a covalent bond within the epoxy resin. The results of the simulations based on the models described above showed that the results of the calculations using the model of cohesive failure based on the breakdown of intermolecular interactions agreed well with the experimental results in the literature. Therefore, it was suggested that the cohesive failure of epoxy resin adhesives is most likely due to the breakdown of intermolecular interactions between adhesive molecules. We further analyzed the interactions at the adhesive failure and cohesive failure interfaces and found that the interactions at the cohesive failure interface are mainly accounted for by dispersion forces, whereas the interactions at the adhesive failure interface involve not only dispersion forces but also various chemical interactions, including hydrogen bonds. The selectivity between adhesive failure and cohesive failure was explained by the fact that varying the functional group density affected the chemical interactions but not the dispersion forces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逐风给逐风的求助进行了留言
1秒前
科研通AI5应助灌饼采纳,获得30
1秒前
Owen应助Zzzzzzzzzzz采纳,获得10
2秒前
3秒前
4秒前
巫马秋寒应助笑点低可乐采纳,获得10
4秒前
xuex1完成签到,获得积分10
4秒前
情怀应助阳光的雁山采纳,获得10
6秒前
斯文败类应助jy采纳,获得10
6秒前
6秒前
日月轮回发布了新的文献求助10
7秒前
36456657应助木香采纳,获得10
8秒前
无花果应助ns采纳,获得30
8秒前
刘铭晨完成签到,获得积分10
8秒前
9秒前
YY发布了新的文献求助10
9秒前
Rrr发布了新的文献求助10
10秒前
学术蠕虫发布了新的文献求助10
10秒前
10秒前
miumiuka完成签到,获得积分10
11秒前
个性的薯片应助lyt采纳,获得20
13秒前
sweetbearm应助寒涛先生采纳,获得10
14秒前
wanci应助YY采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
HC完成签到 ,获得积分10
18秒前
姚姚的赵赵完成签到,获得积分10
18秒前
JamesPei应助大豪子采纳,获得30
19秒前
jy发布了新的文献求助10
19秒前
19秒前
陆靖易发布了新的文献求助10
19秒前
LQW完成签到,获得积分20
20秒前
21秒前
plant完成签到,获得积分10
21秒前
lyt完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808