Toward a unified framework for feature enhancement-guided marine organism detection

有机体 特征(语言学) 计算机科学 地质学 哲学 古生物学 语言学
作者
Na Cheng,Mingrui Li,Hongye Xie,Hongyu Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 19316-19326
标识
DOI:10.1109/jsen.2024.3387484
摘要

Marine organism detection is a crucial technology for underwater autonomous robots, playing a pivotal role in enabling intelligent grasping and facilitating ocean exploration. However, the underwater images acquired by underwater robots through sensor devices have challenges such as low contrast, blur, and color cast. Additionally, the presence of various marine organism types and significant attitude variations further complicate the task of marine organism detection. We propose UEDNet, an innovative and integrated paradigm that combines visual enhancement and object detection tasks through an effective transformer-based feature enhancement module. Unlike conventional approaches that treat underwater image enhancement as a preliminary step, our framework adopts a multi-task joint learning strategy. This strategy allows for the effective sharing of enhanced features generated by the backbone module, promoting a comprehensive integration of weakened and enhanced features. This kind of integration plays a critical role in mitigating the detrimental impact that underperforming enhancement modules have on the detection module. Furthermore, we introduce an enhancement-supervised combination loss, which enables the detection module to handle varying degrees of underwater image degradation and reduces false detections and missed instances of marine organisms. UEDNet achieves a significantly high mean Average Precision (mAP) value of 79.81%, underscoring its robustness as a detection framework that bridges the gap between low-level underwater image enhancement and high-level marine object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸荠完成签到 ,获得积分20
刚刚
张瑞彬完成签到,获得积分10
1秒前
1秒前
Nepenthes发布了新的文献求助10
1秒前
2秒前
你是什么小饼干完成签到,获得积分20
3秒前
miketyson完成签到,获得积分10
3秒前
orixero应助kingjames采纳,获得10
4秒前
chenlike完成签到,获得积分10
5秒前
5秒前
思源应助哈尼采纳,获得10
6秒前
6秒前
mulidexin2021完成签到,获得积分10
6秒前
无限续完成签到,获得积分10
6秒前
lu发布了新的文献求助10
6秒前
Ava应助李月月采纳,获得10
7秒前
7秒前
JZA完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
10秒前
花的微笑完成签到,获得积分10
11秒前
二个虎牙发布了新的文献求助10
12秒前
彭于晏应助笑看水墨风光采纳,获得10
12秒前
蓝白胖次哇完成签到,获得积分10
12秒前
13秒前
星辰大海应助喜悦尔岚采纳,获得10
13秒前
Merry完成签到,获得积分10
13秒前
FashionBoy应助鹅1采纳,获得10
13秒前
一颗白菜发布了新的文献求助10
13秒前
小可爱521发布了新的文献求助10
13秒前
menxiaomei发布了新的文献求助10
14秒前
14秒前
GXSH发布了新的文献求助10
14秒前
过时的机器猫完成签到,获得积分10
14秒前
大月兔完成签到,获得积分10
14秒前
科研通AI2S应助飞云采纳,获得10
14秒前
牛的不low的完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779