Toward a unified framework for feature enhancement-guided marine organism detection

有机体 特征(语言学) 计算机科学 地质学 哲学 古生物学 语言学
作者
Na Cheng,Mingrui Li,Hongye Xie,Hongyu Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 19316-19326
标识
DOI:10.1109/jsen.2024.3387484
摘要

Marine organism detection is a crucial technology for underwater autonomous robots, playing a pivotal role in enabling intelligent grasping and facilitating ocean exploration. However, the underwater images acquired by underwater robots through sensor devices have challenges such as low contrast, blur, and color cast. Additionally, the presence of various marine organism types and significant attitude variations further complicate the task of marine organism detection. We propose UEDNet, an innovative and integrated paradigm that combines visual enhancement and object detection tasks through an effective transformer-based feature enhancement module. Unlike conventional approaches that treat underwater image enhancement as a preliminary step, our framework adopts a multi-task joint learning strategy. This strategy allows for the effective sharing of enhanced features generated by the backbone module, promoting a comprehensive integration of weakened and enhanced features. This kind of integration plays a critical role in mitigating the detrimental impact that underperforming enhancement modules have on the detection module. Furthermore, we introduce an enhancement-supervised combination loss, which enables the detection module to handle varying degrees of underwater image degradation and reduces false detections and missed instances of marine organisms. UEDNet achieves a significantly high mean Average Precision (mAP) value of 79.81%, underscoring its robustness as a detection framework that bridges the gap between low-level underwater image enhancement and high-level marine object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
summer发布了新的文献求助10
1秒前
1秒前
moninaaaaa发布了新的文献求助10
2秒前
徐rl完成签到 ,获得积分10
3秒前
郝宝真发布了新的文献求助10
3秒前
3秒前
6秒前
阳子完成签到,获得积分10
6秒前
万幸鹿发布了新的文献求助10
6秒前
poker发布了新的文献求助10
7秒前
tt完成签到,获得积分10
9秒前
共享精神应助summer采纳,获得10
11秒前
cy发布了新的文献求助10
12秒前
岁岁完成签到 ,获得积分10
12秒前
13秒前
秋刀鱼的滋味完成签到,获得积分10
14秒前
cc小木屋应助万幸鹿采纳,获得10
15秒前
hou完成签到 ,获得积分10
15秒前
16秒前
灬谢池春i完成签到,获得积分10
16秒前
17秒前
17秒前
凡`发布了新的文献求助10
18秒前
18秒前
云上日光发布了新的文献求助30
20秒前
dates2008发布了新的文献求助10
22秒前
ok发布了新的文献求助10
23秒前
流苏完成签到,获得积分10
23秒前
凡`完成签到,获得积分10
25秒前
XXXXH完成签到,获得积分10
28秒前
科目三应助gan采纳,获得10
29秒前
啊怪完成签到 ,获得积分10
31秒前
31秒前
可心完成签到,获得积分10
33秒前
ok完成签到,获得积分10
33秒前
33秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388