Toward a unified framework for feature enhancement-guided marine organism detection

有机体 特征(语言学) 计算机科学 地质学 哲学 古生物学 语言学
作者
Na Cheng,Mingrui Li,Hongye Xie,Hongyu Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 19316-19326
标识
DOI:10.1109/jsen.2024.3387484
摘要

Marine organism detection is a crucial technology for underwater autonomous robots, playing a pivotal role in enabling intelligent grasping and facilitating ocean exploration. However, the underwater images acquired by underwater robots through sensor devices have challenges such as low contrast, blur, and color cast. Additionally, the presence of various marine organism types and significant attitude variations further complicate the task of marine organism detection. We propose UEDNet, an innovative and integrated paradigm that combines visual enhancement and object detection tasks through an effective transformer-based feature enhancement module. Unlike conventional approaches that treat underwater image enhancement as a preliminary step, our framework adopts a multi-task joint learning strategy. This strategy allows for the effective sharing of enhanced features generated by the backbone module, promoting a comprehensive integration of weakened and enhanced features. This kind of integration plays a critical role in mitigating the detrimental impact that underperforming enhancement modules have on the detection module. Furthermore, we introduce an enhancement-supervised combination loss, which enables the detection module to handle varying degrees of underwater image degradation and reduces false detections and missed instances of marine organisms. UEDNet achieves a significantly high mean Average Precision (mAP) value of 79.81%, underscoring its robustness as a detection framework that bridges the gap between low-level underwater image enhancement and high-level marine object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助MutantKitten采纳,获得10
刚刚
马马完成签到 ,获得积分10
1秒前
1秒前
布图格其完成签到,获得积分10
2秒前
晴天完成签到 ,获得积分10
2秒前
LLL发布了新的文献求助10
4秒前
5秒前
5秒前
丘比特应助LYYYY采纳,获得10
6秒前
7秒前
感冒药发布了新的文献求助10
11秒前
Hello应助benhzh采纳,获得10
11秒前
11秒前
12秒前
narcol发布了新的文献求助30
12秒前
Lucas应助LLL采纳,获得10
13秒前
边快乐9296完成签到,获得积分10
17秒前
Esther发布了新的文献求助50
17秒前
21秒前
26秒前
28秒前
Dester驳回了Akim应助
28秒前
28秒前
香蕉寒梅发布了新的文献求助10
28秒前
Zzz发布了新的文献求助10
28秒前
pilgrim应助晨曦采纳,获得10
28秒前
han123123发布了新的文献求助10
29秒前
31秒前
31秒前
31秒前
完美世界应助初空月儿采纳,获得10
31秒前
benhzh发布了新的文献求助10
32秒前
sunguowei完成签到,获得积分20
32秒前
子南发布了新的文献求助10
32秒前
eseme发布了新的文献求助10
33秒前
34秒前
95完成签到 ,获得积分10
36秒前
lkq发布了新的文献求助10
36秒前
打打应助Henvy采纳,获得10
38秒前
鎏祈完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720