已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward a unified framework for feature enhancement-guided marine organism detection

有机体 特征(语言学) 计算机科学 地质学 哲学 古生物学 语言学
作者
Na Cheng,Mingrui Li,Hongye Xie,Hongyu Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 19316-19326
标识
DOI:10.1109/jsen.2024.3387484
摘要

Marine organism detection is a crucial technology for underwater autonomous robots, playing a pivotal role in enabling intelligent grasping and facilitating ocean exploration. However, the underwater images acquired by underwater robots through sensor devices have challenges such as low contrast, blur, and color cast. Additionally, the presence of various marine organism types and significant attitude variations further complicate the task of marine organism detection. We propose UEDNet, an innovative and integrated paradigm that combines visual enhancement and object detection tasks through an effective transformer-based feature enhancement module. Unlike conventional approaches that treat underwater image enhancement as a preliminary step, our framework adopts a multi-task joint learning strategy. This strategy allows for the effective sharing of enhanced features generated by the backbone module, promoting a comprehensive integration of weakened and enhanced features. This kind of integration plays a critical role in mitigating the detrimental impact that underperforming enhancement modules have on the detection module. Furthermore, we introduce an enhancement-supervised combination loss, which enables the detection module to handle varying degrees of underwater image degradation and reduces false detections and missed instances of marine organisms. UEDNet achieves a significantly high mean Average Precision (mAP) value of 79.81%, underscoring its robustness as a detection framework that bridges the gap between low-level underwater image enhancement and high-level marine object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛定谔的猫完成签到,获得积分10
6秒前
btmy16完成签到,获得积分20
6秒前
8秒前
ff发布了新的文献求助10
11秒前
聆琳完成签到 ,获得积分10
11秒前
lsh发布了新的文献求助10
12秒前
俭朴蜜蜂完成签到 ,获得积分10
15秒前
上官若男应助btmy16采纳,获得10
16秒前
香蕉觅云应助快乐的易巧采纳,获得10
18秒前
纭声完成签到 ,获得积分10
18秒前
牛乃唐完成签到 ,获得积分10
23秒前
25秒前
傲娇的棉花糖完成签到 ,获得积分10
25秒前
伟川周完成签到 ,获得积分10
25秒前
何hyy完成签到,获得积分10
26秒前
香山叶正红完成签到 ,获得积分10
27秒前
abandon发布了新的文献求助10
31秒前
荷兰香猪完成签到,获得积分10
31秒前
涵涵涵hh完成签到 ,获得积分10
34秒前
七号在野闪闪完成签到 ,获得积分10
34秒前
38秒前
41秒前
Zr发布了新的文献求助10
42秒前
42秒前
GingerF应助科研通管家采纳,获得50
43秒前
orixero应助科研通管家采纳,获得10
43秒前
GingerF应助科研通管家采纳,获得50
43秒前
浮游应助科研通管家采纳,获得10
43秒前
CipherSage应助科研通管家采纳,获得10
43秒前
Lucas应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
GingerF应助科研通管家采纳,获得50
43秒前
GingerF应助科研通管家采纳,获得50
43秒前
GingerF应助科研通管家采纳,获得50
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
44秒前
44秒前
46秒前
mwm完成签到 ,获得积分10
46秒前
Zr完成签到,获得积分10
50秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136626
求助须知:如何正确求助?哪些是违规求助? 4336724
关于积分的说明 13510467
捐赠科研通 4174839
什么是DOI,文献DOI怎么找? 2289082
邀请新用户注册赠送积分活动 1289774
关于科研通互助平台的介绍 1231100