已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward a unified framework for feature enhancement-guided marine organism detection

有机体 特征(语言学) 计算机科学 地质学 哲学 古生物学 语言学
作者
Na Cheng,Mingrui Li,Hongye Xie,Hongyu Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 19316-19326
标识
DOI:10.1109/jsen.2024.3387484
摘要

Marine organism detection is a crucial technology for underwater autonomous robots, playing a pivotal role in enabling intelligent grasping and facilitating ocean exploration. However, the underwater images acquired by underwater robots through sensor devices have challenges such as low contrast, blur, and color cast. Additionally, the presence of various marine organism types and significant attitude variations further complicate the task of marine organism detection. We propose UEDNet, an innovative and integrated paradigm that combines visual enhancement and object detection tasks through an effective transformer-based feature enhancement module. Unlike conventional approaches that treat underwater image enhancement as a preliminary step, our framework adopts a multi-task joint learning strategy. This strategy allows for the effective sharing of enhanced features generated by the backbone module, promoting a comprehensive integration of weakened and enhanced features. This kind of integration plays a critical role in mitigating the detrimental impact that underperforming enhancement modules have on the detection module. Furthermore, we introduce an enhancement-supervised combination loss, which enables the detection module to handle varying degrees of underwater image degradation and reduces false detections and missed instances of marine organisms. UEDNet achieves a significantly high mean Average Precision (mAP) value of 79.81%, underscoring its robustness as a detection framework that bridges the gap between low-level underwater image enhancement and high-level marine object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kesler完成签到,获得积分20
5秒前
7秒前
7秒前
霸天虎发布了新的文献求助30
8秒前
10秒前
超级冰巧关注了科研通微信公众号
11秒前
Cosmosurfer完成签到,获得积分10
12秒前
Lidocaine发布了新的文献求助10
12秒前
tzz发布了新的文献求助10
12秒前
远山发布了新的文献求助10
16秒前
RR发布了新的文献求助10
19秒前
whqpeter完成签到,获得积分10
19秒前
xiaoyuyuyu完成签到 ,获得积分10
19秒前
新定义发布了新的文献求助10
21秒前
乐乐应助燕海雪采纳,获得10
21秒前
kei发布了新的文献求助10
21秒前
zzmyyds完成签到,获得积分10
23秒前
守墓人发布了新的文献求助10
24秒前
kesler驳回了烟花应助
29秒前
何柯完成签到,获得积分10
32秒前
33秒前
芬芬完成签到,获得积分10
33秒前
35秒前
Jackylee完成签到,获得积分10
36秒前
38秒前
贱小贱完成签到,获得积分10
38秒前
龙龙不卷发布了新的文献求助10
39秒前
新定义完成签到,获得积分10
39秒前
雨柏完成签到 ,获得积分10
47秒前
搜集达人应助龙龙不卷采纳,获得10
48秒前
兜兜完成签到 ,获得积分10
48秒前
56秒前
57秒前
57秒前
57秒前
Splaink发布了新的文献求助10
59秒前
1分钟前
dsahd2完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253415
求助须知:如何正确求助?哪些是违规求助? 4416784
关于积分的说明 13750464
捐赠科研通 4289176
什么是DOI,文献DOI怎么找? 2353280
邀请新用户注册赠送积分活动 1349992
关于科研通互助平台的介绍 1309831