Toward a unified framework for feature enhancement-guided marine organism detection

有机体 特征(语言学) 计算机科学 地质学 哲学 古生物学 语言学
作者
Na Cheng,Mingrui Li,Hongye Xie,Hongyu Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 19316-19326
标识
DOI:10.1109/jsen.2024.3387484
摘要

Marine organism detection is a crucial technology for underwater autonomous robots, playing a pivotal role in enabling intelligent grasping and facilitating ocean exploration. However, the underwater images acquired by underwater robots through sensor devices have challenges such as low contrast, blur, and color cast. Additionally, the presence of various marine organism types and significant attitude variations further complicate the task of marine organism detection. We propose UEDNet, an innovative and integrated paradigm that combines visual enhancement and object detection tasks through an effective transformer-based feature enhancement module. Unlike conventional approaches that treat underwater image enhancement as a preliminary step, our framework adopts a multi-task joint learning strategy. This strategy allows for the effective sharing of enhanced features generated by the backbone module, promoting a comprehensive integration of weakened and enhanced features. This kind of integration plays a critical role in mitigating the detrimental impact that underperforming enhancement modules have on the detection module. Furthermore, we introduce an enhancement-supervised combination loss, which enables the detection module to handle varying degrees of underwater image degradation and reduces false detections and missed instances of marine organisms. UEDNet achieves a significantly high mean Average Precision (mAP) value of 79.81%, underscoring its robustness as a detection framework that bridges the gap between low-level underwater image enhancement and high-level marine object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Grayball应助ccc采纳,获得10
刚刚
bkagyin应助猪猪hero采纳,获得10
1秒前
1秒前
科研通AI5应助顺利毕业采纳,获得10
2秒前
领导范儿应助spray采纳,获得30
2秒前
2秒前
长风完成签到,获得积分10
3秒前
4秒前
吴岳发布了新的文献求助10
4秒前
科研通AI2S应助我是125采纳,获得10
5秒前
涛涛完成签到,获得积分10
5秒前
轩辕德地发布了新的文献求助10
6秒前
科研通AI2S应助jidou1011采纳,获得10
6秒前
魔幻的妖丽完成签到 ,获得积分10
7秒前
黄晓杰2024完成签到,获得积分10
8秒前
枫叶完成签到,获得积分10
9秒前
9秒前
10秒前
小二郎应助虚心盼晴采纳,获得10
10秒前
俊逸的盛男完成签到 ,获得积分10
10秒前
12秒前
脑洞疼应助枫叶采纳,获得10
13秒前
13秒前
Gyrate完成签到,获得积分10
14秒前
李李发布了新的文献求助50
14秒前
dashi完成签到 ,获得积分10
14秒前
无花果应助一天八杯水采纳,获得10
14秒前
14秒前
SS发布了新的文献求助10
15秒前
顺顺发布了新的文献求助10
16秒前
16秒前
16秒前
www发布了新的文献求助10
16秒前
17秒前
17秒前
李繁蕊发布了新的文献求助10
18秒前
暴躁的嘉懿完成签到,获得积分10
18秒前
LZH发布了新的文献求助20
18秒前
领导范儿应助rosexu采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808