Toward a unified framework for feature enhancement-guided marine organism detection

有机体 特征(语言学) 计算机科学 地质学 哲学 古生物学 语言学
作者
Na Cheng,Mingrui Li,Hongye Xie,Hongyu Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 19316-19326
标识
DOI:10.1109/jsen.2024.3387484
摘要

Marine organism detection is a crucial technology for underwater autonomous robots, playing a pivotal role in enabling intelligent grasping and facilitating ocean exploration. However, the underwater images acquired by underwater robots through sensor devices have challenges such as low contrast, blur, and color cast. Additionally, the presence of various marine organism types and significant attitude variations further complicate the task of marine organism detection. We propose UEDNet, an innovative and integrated paradigm that combines visual enhancement and object detection tasks through an effective transformer-based feature enhancement module. Unlike conventional approaches that treat underwater image enhancement as a preliminary step, our framework adopts a multi-task joint learning strategy. This strategy allows for the effective sharing of enhanced features generated by the backbone module, promoting a comprehensive integration of weakened and enhanced features. This kind of integration plays a critical role in mitigating the detrimental impact that underperforming enhancement modules have on the detection module. Furthermore, we introduce an enhancement-supervised combination loss, which enables the detection module to handle varying degrees of underwater image degradation and reduces false detections and missed instances of marine organisms. UEDNet achieves a significantly high mean Average Precision (mAP) value of 79.81%, underscoring its robustness as a detection framework that bridges the gap between low-level underwater image enhancement and high-level marine object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猪哥哥发布了新的文献求助30
刚刚
疾风完成签到,获得积分10
1秒前
研友_ZAxX6n发布了新的文献求助30
2秒前
冷静的斑马完成签到,获得积分10
2秒前
栓Q发布了新的文献求助10
2秒前
Jsl完成签到,获得积分10
3秒前
抠抠小手完成签到,获得积分10
3秒前
3秒前
六斤米完成签到,获得积分10
3秒前
916应助马力采纳,获得10
3秒前
4秒前
4秒前
zhaoyali发布了新的文献求助10
5秒前
5秒前
爆米花应助鲤鱼安青采纳,获得10
6秒前
周周发布了新的文献求助10
6秒前
CC完成签到,获得积分10
6秒前
6秒前
曳尘应助野原顶不住采纳,获得20
6秒前
7秒前
李爱国应助孙夕然采纳,获得30
8秒前
9秒前
bkagyin应助SHD采纳,获得10
9秒前
魔幻擎宇发布了新的文献求助10
10秒前
研友_ZAxX6n完成签到,获得积分20
10秒前
Han发布了新的文献求助10
11秒前
wang发布了新的文献求助10
12秒前
12秒前
可爱的函函应助中宝采纳,获得10
12秒前
888886kn完成签到,获得积分20
12秒前
Muhammad完成签到,获得积分10
14秒前
冷傲机器猫完成签到,获得积分10
14秒前
香蕉觅云应助τ涛采纳,获得10
14秒前
打打应助Donby采纳,获得10
15秒前
SH完成签到,获得积分20
15秒前
fhgosdfh完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219