Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae

生物信息学 代谢工程 酿酒酵母 异源的 计算生物学 生物 萜类 基因敲除 可持续生产 基因 生产(经济) 生物技术 生物化学 宏观经济学 经济
作者
Na Zhang,Xiaohan Li,Qiang Zhou,Ying Zhang,Bo Lv,Bing Hu,Chun Li
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:83: 172-182 被引量:7
标识
DOI:10.1016/j.ymben.2024.04.005
摘要

Microbial bioengineering is a growing field for producing plant natural products (PNPs) in recent decades, using heterologous metabolic pathways in host cells. Once heterologous metabolic pathways have been introduced into host cells, traditional metabolic engineering techniques are employed to enhance the productivity and yield of PNP biosynthetic routes, as well as to manage competing pathways. The advent of computational biology has marked the beginning of a novel epoch in strain design through in silico methods. These methods utilize genome-scale metabolic models (GEMs) and flux optimization algorithms to facilitate rational design across the entire cellular metabolic network. However, the implementation of in silico strategies can often result in an uneven distribution of metabolic fluxes due to the rigid knocking out of endogenous genes, which can impede cell growth and ultimately impact the accumulation of target products. In this study, we creatively utilized synthetic biology to refine in silico strain design for efficient PNPs production. OptKnock simulation was performed on the GEM of Saccharomyces cerevisiae OA07, an engineered strain for oleanolic acid (OA) bioproduction that has been reported previously. The simulation predicted that the single deletion of fol1, fol2, fol3, abz1, and abz2, or a combined knockout of hfd1, ald2 and ald3 could improve its OA production. Consequently, strains EK1∼EK7 were constructed and cultivated. EK3 (OA07△fol3), EK5 (OA07△abz1), and EK6 (OA07△abz2) had significantly higher OA titers in a batch cultivation compared to the original strain OA07. However, these increases were less pronounced in the fed-batch mode, indicating that gene deletion did not support sustainable OA production. To address this, we designed a negative feedback circuit regulated by malonyl-CoA, a growth-associated intermediate whose synthesis served as a bypass to OA synthesis, at fol3, abz1, abz2, and at acetyl-CoA carboxylase-encoding gene acc1, to dynamically and autonomously regulate the expression of these genes in OA07. The constructed strains R_3A, R_5A and R_6A had significantly higher OA titers than the initial strain and the responding gene-knockout mutants in either batch or fed-batch culture modes. Among them, strain R_3A stand out with the highest OA titer reported to date. Its OA titer doubled that of the initial strain in the flask-level fed-batch cultivation, and achieved at 1.23 ± 0.04 g L

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
George Will完成签到,获得积分10
刚刚
无私的丹完成签到 ,获得积分10
刚刚
HuiYmao发布了新的文献求助10
1秒前
figo发布了新的文献求助10
1秒前
丘比特应助Sunny采纳,获得10
2秒前
NexusExplorer应助Katze采纳,获得10
3秒前
3秒前
王图图完成签到 ,获得积分10
4秒前
迷路山晴发布了新的文献求助10
4秒前
lzzk完成签到,获得积分10
5秒前
歇洛克完成签到,获得积分20
5秒前
英姑应助underway采纳,获得10
5秒前
大个应助郝好月采纳,获得10
6秒前
Ava应助虾啊采纳,获得10
6秒前
HuiYmao完成签到,获得积分10
6秒前
丸子完成签到 ,获得积分10
8秒前
脑洞疼应助大群采纳,获得10
8秒前
珍惜眼前人完成签到,获得积分10
8秒前
方法完成签到,获得积分10
9秒前
9秒前
ASHUN完成签到,获得积分10
10秒前
11秒前
星辰大海应助度度采纳,获得10
11秒前
小T儿完成签到,获得积分10
12秒前
SUNLE完成签到,获得积分10
13秒前
无花果应助迷路山晴采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
Ciaoh发布了新的文献求助10
14秒前
陌陌完成签到 ,获得积分10
15秒前
Sunny发布了新的文献求助10
15秒前
11完成签到,获得积分10
15秒前
布楚楚完成签到,获得积分20
15秒前
16秒前
尧尧发布了新的文献求助10
16秒前
Gauss应助天南采纳,获得30
17秒前
17秒前
优pp完成签到 ,获得积分10
18秒前
打打应助zhouleiwang采纳,获得10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5607982
求助须知:如何正确求助?哪些是违规求助? 4692447
关于积分的说明 14874887
捐赠科研通 4716182
什么是DOI,文献DOI怎么找? 2543917
邀请新用户注册赠送积分活动 1509011
关于科研通互助平台的介绍 1472709