Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae

生物信息学 代谢工程 酿酒酵母 异源的 计算生物学 生物 萜类 基因敲除 可持续生产 基因 生产(经济) 生物技术 生物化学 宏观经济学 经济
作者
Na Zhang,Xiaohan Li,Qiang Zhou,Ying Zhang,Bo Lv,Bing Hu,Chun Li
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:83: 172-182 被引量:7
标识
DOI:10.1016/j.ymben.2024.04.005
摘要

Microbial bioengineering is a growing field for producing plant natural products (PNPs) in recent decades, using heterologous metabolic pathways in host cells. Once heterologous metabolic pathways have been introduced into host cells, traditional metabolic engineering techniques are employed to enhance the productivity and yield of PNP biosynthetic routes, as well as to manage competing pathways. The advent of computational biology has marked the beginning of a novel epoch in strain design through in silico methods. These methods utilize genome-scale metabolic models (GEMs) and flux optimization algorithms to facilitate rational design across the entire cellular metabolic network. However, the implementation of in silico strategies can often result in an uneven distribution of metabolic fluxes due to the rigid knocking out of endogenous genes, which can impede cell growth and ultimately impact the accumulation of target products. In this study, we creatively utilized synthetic biology to refine in silico strain design for efficient PNPs production. OptKnock simulation was performed on the GEM of Saccharomyces cerevisiae OA07, an engineered strain for oleanolic acid (OA) bioproduction that has been reported previously. The simulation predicted that the single deletion of fol1, fol2, fol3, abz1, and abz2, or a combined knockout of hfd1, ald2 and ald3 could improve its OA production. Consequently, strains EK1∼EK7 were constructed and cultivated. EK3 (OA07△fol3), EK5 (OA07△abz1), and EK6 (OA07△abz2) had significantly higher OA titers in a batch cultivation compared to the original strain OA07. However, these increases were less pronounced in the fed-batch mode, indicating that gene deletion did not support sustainable OA production. To address this, we designed a negative feedback circuit regulated by malonyl-CoA, a growth-associated intermediate whose synthesis served as a bypass to OA synthesis, at fol3, abz1, abz2, and at acetyl-CoA carboxylase-encoding gene acc1, to dynamically and autonomously regulate the expression of these genes in OA07. The constructed strains R_3A, R_5A and R_6A had significantly higher OA titers than the initial strain and the responding gene-knockout mutants in either batch or fed-batch culture modes. Among them, strain R_3A stand out with the highest OA titer reported to date. Its OA titer doubled that of the initial strain in the flask-level fed-batch cultivation, and achieved at 1.23 ± 0.04 g L
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚风发布了新的文献求助10
刚刚
wlscj给舒桐啊的求助进行了留言
刚刚
dyuguo3完成签到 ,获得积分10
刚刚
宥沐发布了新的文献求助10
1秒前
共享精神应助lyb采纳,获得10
1秒前
喳喳瑶完成签到,获得积分10
1秒前
orixero应助iebix采纳,获得10
4秒前
4秒前
4秒前
4秒前
行星一只兔完成签到 ,获得积分10
5秒前
5秒前
5秒前
斯文白梦发布了新的文献求助80
5秒前
ding应助开心的雁卉采纳,获得10
5秒前
米米米发布了新的文献求助10
5秒前
lzz完成签到,获得积分10
6秒前
飞快的大树完成签到,获得积分10
6秒前
7秒前
7秒前
情怀应助李晓亚采纳,获得10
7秒前
乐乐发布了新的文献求助10
7秒前
Lucas应助英吉利25采纳,获得10
7秒前
7秒前
8秒前
爆米花应助小H采纳,获得10
9秒前
wdlc发布了新的文献求助20
9秒前
安详的海风完成签到,获得积分10
10秒前
wang发布了新的文献求助10
10秒前
小余同学发布了新的文献求助10
10秒前
11秒前
lu发布了新的文献求助10
11秒前
oyl发布了新的文献求助10
11秒前
11秒前
12秒前
hhhhwj发布了新的文献求助10
12秒前
12秒前
mmyhn发布了新的文献求助10
13秒前
慕青应助xlxlaaa采纳,获得10
13秒前
传奇3应助苦逼的科研汪采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923