A medical image segmentation method for rectal tumors based on multi‐scale feature retention and multiple attention mechanisms

分割 计算机科学 人工智能 特征(语言学) 卷积神经网络 模式识别(心理学) 图像分割 特征提取 深度学习 骨干网 计算机视觉 医学影像学 计算机网络 语言学 哲学
作者
Jumin Zhao,Linjun Liu,Xiaotang Yang,Yanfen Cui,Dengao Li,Huiting Zhang,Kenan Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (5): 3275-3291
标识
DOI:10.1002/mp.17044
摘要

Abstract Background With the continuous development of deep learning algorithms in the field of medical images, models for medical image processing based on convolutional neural networks have made great progress. Since medical images of rectal tumors are characterized by specific morphological features and complex edges that differ from natural images, achieving good segmentation results often requires a higher level of enrichment through the utilization of semantic features. Purpose The efficiency of feature extraction and utilization has been improved to some extent through enhanced hardware arithmetic and deeper networks in most models. However, problems still exist with detail loss and difficulty in feature extraction, arising from the extraction of high‐level semantic features in deep networks. Methods In this work, a novel medical image segmentation model has been proposed for Magnetic Resonance Imaging (MRI) image segmentation of rectal tumors. The model constructs a backbone architecture based on the idea of jump‐connected feature fusion and solves the problems of detail feature loss and low segmentation accuracy using three novel modules: Multi‐scale Feature Retention (MFR), Multi‐branch Cross‐channel Attention (MCA), and Coordinate Attention (CA). Results Compared with existing methods, our proposed model is able to segment the tumor region more effectively, achieving 97.4% and 94.9% in Dice and mIoU metrics, respectively, exhibiting excellent segmentation performance and computational speed. Conclusions Our proposed model has improved the accuracy of both lesion region and tumor edge segmentation. In particular, the determination of the lesion region can help doctors identify the tumor location in clinical diagnosis, and the accurate segmentation of the tumor edge can assist doctors in judging the necessity and feasibility of surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松完成签到,获得积分10
3秒前
一纸小笺完成签到,获得积分10
3秒前
10秒前
huco完成签到,获得积分10
24秒前
居居侠完成签到 ,获得积分10
25秒前
在路上应助kol采纳,获得10
39秒前
minuxSCI完成签到,获得积分10
41秒前
zhilianghui0807完成签到 ,获得积分10
44秒前
ycw7777完成签到,获得积分10
48秒前
alixy完成签到,获得积分10
1分钟前
fang完成签到,获得积分10
1分钟前
琦qi完成签到 ,获得积分10
1分钟前
wjf123完成签到 ,获得积分10
1分钟前
马大翔完成签到,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
luochen完成签到,获得积分10
1分钟前
昵称完成签到 ,获得积分10
1分钟前
Ashley完成签到 ,获得积分10
1分钟前
我就想看看文献完成签到 ,获得积分10
1分钟前
深深完成签到,获得积分10
1分钟前
JaneChen完成签到 ,获得积分10
1分钟前
巾凡完成签到 ,获得积分10
1分钟前
Accept完成签到,获得积分10
1分钟前
i2stay完成签到,获得积分10
1分钟前
蔡蕾丝完成签到,获得积分10
2分钟前
旺仔完成签到 ,获得积分10
2分钟前
goodsheep完成签到 ,获得积分10
2分钟前
我和你完成签到 ,获得积分10
2分钟前
芮Echo完成签到,获得积分10
2分钟前
lizef完成签到 ,获得积分10
2分钟前
苏云墨完成签到 ,获得积分10
2分钟前
ii完成签到 ,获得积分10
2分钟前
danli完成签到 ,获得积分10
2分钟前
科研通AI2S应助芮Echo采纳,获得10
2分钟前
梓歆完成签到 ,获得积分10
2分钟前
OKay呀完成签到 ,获得积分10
2分钟前
希望天下0贩的0应助xuaotian采纳,获得10
2分钟前
积极盼山完成签到 ,获得积分10
2分钟前
1Yer6完成签到 ,获得积分10
2分钟前
lzt完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788025
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010