已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A medical image segmentation method for rectal tumors based on multi‐scale feature retention and multiple attention mechanisms

分割 计算机科学 人工智能 特征(语言学) 卷积神经网络 模式识别(心理学) 图像分割 特征提取 深度学习 骨干网 计算机视觉 医学影像学 哲学 语言学 计算机网络
作者
Jumin Zhao,Linjun Liu,Xiaotang Yang,Yanfen Cui,Dengao Li,Huiting Zhang,Kenan Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (5): 3275-3291
标识
DOI:10.1002/mp.17044
摘要

Abstract Background With the continuous development of deep learning algorithms in the field of medical images, models for medical image processing based on convolutional neural networks have made great progress. Since medical images of rectal tumors are characterized by specific morphological features and complex edges that differ from natural images, achieving good segmentation results often requires a higher level of enrichment through the utilization of semantic features. Purpose The efficiency of feature extraction and utilization has been improved to some extent through enhanced hardware arithmetic and deeper networks in most models. However, problems still exist with detail loss and difficulty in feature extraction, arising from the extraction of high‐level semantic features in deep networks. Methods In this work, a novel medical image segmentation model has been proposed for Magnetic Resonance Imaging (MRI) image segmentation of rectal tumors. The model constructs a backbone architecture based on the idea of jump‐connected feature fusion and solves the problems of detail feature loss and low segmentation accuracy using three novel modules: Multi‐scale Feature Retention (MFR), Multi‐branch Cross‐channel Attention (MCA), and Coordinate Attention (CA). Results Compared with existing methods, our proposed model is able to segment the tumor region more effectively, achieving 97.4% and 94.9% in Dice and mIoU metrics, respectively, exhibiting excellent segmentation performance and computational speed. Conclusions Our proposed model has improved the accuracy of both lesion region and tumor edge segmentation. In particular, the determination of the lesion region can help doctors identify the tumor location in clinical diagnosis, and the accurate segmentation of the tumor edge can assist doctors in judging the necessity and feasibility of surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人的天抒应助焦立超采纳,获得10
刚刚
薏米人儿完成签到 ,获得积分10
3秒前
Marciu33应助1234567采纳,获得20
4秒前
含糊的非笑完成签到,获得积分10
4秒前
znlion完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
HUO完成签到 ,获得积分10
10秒前
10秒前
Rondab应助科研通管家采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
12秒前
Rondab应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
JJ完成签到,获得积分10
14秒前
芯之痕发布了新的文献求助10
16秒前
Trends发布了新的文献求助10
16秒前
hhhhhhhhhh完成签到 ,获得积分10
18秒前
鱼生完成签到,获得积分10
21秒前
李世航完成签到,获得积分10
21秒前
xixi完成签到 ,获得积分10
21秒前
swimming完成签到 ,获得积分10
21秒前
23秒前
果冻橙发布了新的文献求助10
27秒前
sjw发布了新的文献求助10
29秒前
wenlong完成签到 ,获得积分10
29秒前
29秒前
无花果应助Naturewoman采纳,获得10
30秒前
简单的季风完成签到 ,获得积分20
31秒前
无限的书芹完成签到 ,获得积分10
31秒前
33秒前
CR7应助咸鱼王采纳,获得20
34秒前
zzf完成签到,获得积分10
34秒前
suiyi发布了新的文献求助10
34秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976572
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204365
捐赠科研通 3257284
什么是DOI,文献DOI怎么找? 1798667
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806577