Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III

投资组合优化 计算机科学 多目标优化 数学优化 文件夹 最优化问题 稳健优化 投资策略 机器学习 数学 市场流动性 经济 财务 算法
作者
Mengzheng Lv,Jianzhou Wang,Shuai Wang,Jialu Gao,Honggang Guo
出处
期刊:Information Sciences [Elsevier BV]
卷期号:670: 120549-120549 被引量:13
标识
DOI:10.1016/j.ins.2024.120549
摘要

Portfolio management is a critical aspect of investment strategies, with the goal to balance the low-risk and high-return investments. Despite this, existing portfolios frequently overlook the integration of stock selection outcomes and underutilize data from listed companies, leading to suboptimal portfolio performance. Addressing these shortcomings, this paper introduces a hybrid system involving stock selection and portfolio optimization. In stock selection, the system employs a combination of convolutional neural network and bi-directional recurrent neural network to predict stock trends. This approach enables the identification of stocks likely to appreciate in value, setting the stage for their inclusion in the subsequent optimization process. For portfolio optimization, the study formulates a five-objective optimization problem that incorporates mean, variance, skewness, kurtosis, and distance-to-default as key considerations. To solve the many-objective constrained optimization problem, an advanced strategy employing a static penalty function and an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) based on tent chaotic mapping is utilized. The efficacy of the proposed hybrid system is rigorously tested through three sets of ablation experiments alongside two discussions focused on its robustness and computational efficiency. The findings from these investigations reveal that the hybrid system outperforms traditional approaches, reducing risks and improving returns for investors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到,获得积分10
刚刚
斯文败类应助哈哈哈采纳,获得10
1秒前
wwb完成签到,获得积分10
2秒前
打工科研发布了新的文献求助10
3秒前
结实的德地完成签到,获得积分10
5秒前
5秒前
楼下小黑完成签到 ,获得积分10
5秒前
5秒前
华仔应助旺仔Mario采纳,获得10
6秒前
7秒前
7秒前
刘一鸣发布了新的文献求助10
10秒前
吴钩霜雪明完成签到 ,获得积分10
10秒前
10秒前
乔乔兔发布了新的文献求助10
11秒前
11秒前
11秒前
派大星完成签到,获得积分10
11秒前
程住气完成签到 ,获得积分10
13秒前
香蕉觅云应助刘一鸣采纳,获得10
13秒前
14秒前
niuniu发布了新的文献求助10
18秒前
小马甲应助健壮的芷容采纳,获得10
18秒前
文艺裘完成签到,获得积分10
18秒前
打工科研完成签到 ,获得积分20
19秒前
19秒前
20秒前
jjamazing完成签到,获得积分10
21秒前
隐形曼青应助未来可期采纳,获得10
23秒前
lagom完成签到,获得积分10
24秒前
24秒前
26秒前
26秒前
农夫果园完成签到,获得积分10
27秒前
共享精神应助博修采纳,获得200
29秒前
万能图书馆应助我先睡了采纳,获得10
30秒前
醉熏的伊发布了新的文献求助10
31秒前
刘一鸣发布了新的文献求助10
32秒前
32秒前
小马甲应助boluohu采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993