Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III

投资组合优化 计算机科学 多目标优化 数学优化 文件夹 最优化问题 稳健优化 投资策略 机器学习 数学 市场流动性 经济 财务 算法
作者
Mengzheng Lv,Jianzhou Wang,Shuai Wang,Jialu Gao,Honggang Guo
出处
期刊:Information Sciences [Elsevier]
卷期号:670: 120549-120549 被引量:13
标识
DOI:10.1016/j.ins.2024.120549
摘要

Portfolio management is a critical aspect of investment strategies, with the goal to balance the low-risk and high-return investments. Despite this, existing portfolios frequently overlook the integration of stock selection outcomes and underutilize data from listed companies, leading to suboptimal portfolio performance. Addressing these shortcomings, this paper introduces a hybrid system involving stock selection and portfolio optimization. In stock selection, the system employs a combination of convolutional neural network and bi-directional recurrent neural network to predict stock trends. This approach enables the identification of stocks likely to appreciate in value, setting the stage for their inclusion in the subsequent optimization process. For portfolio optimization, the study formulates a five-objective optimization problem that incorporates mean, variance, skewness, kurtosis, and distance-to-default as key considerations. To solve the many-objective constrained optimization problem, an advanced strategy employing a static penalty function and an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) based on tent chaotic mapping is utilized. The efficacy of the proposed hybrid system is rigorously tested through three sets of ablation experiments alongside two discussions focused on its robustness and computational efficiency. The findings from these investigations reveal that the hybrid system outperforms traditional approaches, reducing risks and improving returns for investors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果完成签到 ,获得积分10
刚刚
大个应助内向的天蓝采纳,获得10
刚刚
chengzhiheng完成签到,获得积分10
1秒前
angewjacs发布了新的文献求助10
1秒前
xiaobai发布了新的文献求助10
1秒前
tangyu发布了新的文献求助10
1秒前
大大大完成签到,获得积分10
2秒前
你非常棒发布了新的文献求助10
2秒前
易只羊发布了新的文献求助30
3秒前
3秒前
3秒前
guan完成签到,获得积分10
3秒前
冷静的鸡完成签到,获得积分10
3秒前
3秒前
蝉鸣发布了新的文献求助10
3秒前
4秒前
苽峰完成签到,获得积分10
4秒前
细心的星月关注了科研通微信公众号
4秒前
三木发布了新的文献求助10
4秒前
4秒前
4秒前
chengzhiheng发布了新的文献求助10
5秒前
悲伤菇发布了新的文献求助20
5秒前
6秒前
點點完成签到,获得积分20
6秒前
达达完成签到,获得积分10
7秒前
speedness完成签到,获得积分10
7秒前
lgj666发布了新的文献求助10
7秒前
8秒前
zjq发布了新的文献求助10
9秒前
9秒前
李彦完成签到,获得积分10
9秒前
GOD伟发布了新的文献求助10
10秒前
小小K发布了新的文献求助10
10秒前
开放依琴完成签到,获得积分10
10秒前
10秒前
在水一方应助狗狗很纠结采纳,获得10
11秒前
默默的聪健完成签到,获得积分10
11秒前
姜夔完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478