Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III

投资组合优化 计算机科学 多目标优化 数学优化 文件夹 最优化问题 稳健优化 投资策略 机器学习 数学 市场流动性 经济 财务 算法
作者
Mengzheng Lv,Jianzhou Wang,Shuai Wang,Jialu Gao,Honggang Guo
出处
期刊:Information Sciences [Elsevier]
卷期号:670: 120549-120549 被引量:13
标识
DOI:10.1016/j.ins.2024.120549
摘要

Portfolio management is a critical aspect of investment strategies, with the goal to balance the low-risk and high-return investments. Despite this, existing portfolios frequently overlook the integration of stock selection outcomes and underutilize data from listed companies, leading to suboptimal portfolio performance. Addressing these shortcomings, this paper introduces a hybrid system involving stock selection and portfolio optimization. In stock selection, the system employs a combination of convolutional neural network and bi-directional recurrent neural network to predict stock trends. This approach enables the identification of stocks likely to appreciate in value, setting the stage for their inclusion in the subsequent optimization process. For portfolio optimization, the study formulates a five-objective optimization problem that incorporates mean, variance, skewness, kurtosis, and distance-to-default as key considerations. To solve the many-objective constrained optimization problem, an advanced strategy employing a static penalty function and an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) based on tent chaotic mapping is utilized. The efficacy of the proposed hybrid system is rigorously tested through three sets of ablation experiments alongside two discussions focused on its robustness and computational efficiency. The findings from these investigations reveal that the hybrid system outperforms traditional approaches, reducing risks and improving returns for investors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心太阳完成签到,获得积分10
刚刚
舒服的善若完成签到 ,获得积分10
1秒前
1秒前
华仔应助zyy采纳,获得10
1秒前
1秒前
1秒前
mxr发布了新的文献求助200
2秒前
完美世界应助超级的藏花采纳,获得10
2秒前
yangyajie发布了新的文献求助10
2秒前
3秒前
健壮的蘑菇完成签到,获得积分10
3秒前
赘婿应助泷生采纳,获得10
4秒前
TT发布了新的文献求助10
5秒前
荷兰香猪完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
qiqiqi发布了新的文献求助30
7秒前
8秒前
希望天下0贩的0应助呼呼采纳,获得10
8秒前
顾矜应助默默的晓兰采纳,获得10
8秒前
kks569发布了新的文献求助10
9秒前
大团子发布了新的文献求助10
9秒前
科研通AI6应助迫切采纳,获得10
9秒前
10秒前
科研通AI6应助寒冷的箴采纳,获得10
10秒前
10秒前
破绽发布了新的文献求助10
10秒前
10秒前
大气的身影完成签到,获得积分20
10秒前
11秒前
桐桐应助星辰采纳,获得10
11秒前
科研通AI2S应助ARIA采纳,获得10
11秒前
lanlanlan完成签到 ,获得积分10
12秒前
dyyisash完成签到 ,获得积分10
13秒前
gwentea发布了新的文献求助10
13秒前
ll发布了新的文献求助10
13秒前
吃货发布了新的文献求助10
14秒前
liuyingke完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901