Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III

投资组合优化 计算机科学 选择(遗传算法) 多目标优化 数学优化 文件夹 人工智能 库存(枪支) 机器学习 数学 经济 工程类 金融经济学 机械工程
作者
Mengzheng Lv,Jianzhou Wang,Shuai Wang,Jialu Gao,Honggang Guo
出处
期刊:Information Sciences [Elsevier]
卷期号:670: 120549-120549 被引量:2
标识
DOI:10.1016/j.ins.2024.120549
摘要

Portfolio management is a critical aspect of investment strategies, with the goal to balance the low-risk and high-return investments. Despite this, existing portfolios frequently overlook the integration of stock selection outcomes and underutilize data from listed companies, leading to suboptimal portfolio performance. Addressing these shortcomings, this paper introduces a hybrid system involving stock selection and portfolio optimization. In stock selection, the system employs a combination of convolutional neural network and bi-directional recurrent neural network to predict stock trends. This approach enables the identification of stocks likely to appreciate in value, setting the stage for their inclusion in the subsequent optimization process. For portfolio optimization, the study formulates a five-objective optimization problem that incorporates mean, variance, skewness, kurtosis, and distance-to-default as key considerations. To solve the many-objective constrained optimization problem, an advanced strategy employing a static penalty function and an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) based on tent chaotic mapping is utilized. The efficacy of the proposed hybrid system is rigorously tested through three sets of ablation experiments alongside two discussions focused on its robustness and computational efficiency. The findings from these investigations reveal that the hybrid system outperforms traditional approaches, reducing risks and improving returns for investors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21发布了新的文献求助10
刚刚
感性的初兰完成签到,获得积分10
1秒前
zhanghaonan完成签到,获得积分10
1秒前
2秒前
噜噜晓发布了新的文献求助10
2秒前
斯文败类应助kaneki采纳,获得10
4秒前
4秒前
顾矜应助黛寒采纳,获得10
6秒前
quhayley应助科学家采纳,获得10
6秒前
JamesPei应助2123121321321采纳,获得10
8秒前
10秒前
ddd完成签到,获得积分10
10秒前
11秒前
Devil77发布了新的文献求助10
11秒前
迷路饼干发布了新的文献求助10
12秒前
Lucas应助小鸡炖蘑菇采纳,获得10
12秒前
科目三应助呼呼哈哈采纳,获得10
13秒前
咖啡豆应助科研通管家采纳,获得20
13秒前
25号底片应助科研通管家采纳,获得1000
13秒前
斯文败类应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
14秒前
情怀应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
cjq完成签到,获得积分10
16秒前
16秒前
愉悦完成签到,获得积分10
17秒前
佟蓝血发布了新的文献求助10
17秒前
神凰完成签到,获得积分10
19秒前
yq完成签到 ,获得积分10
19秒前
彭于晏应助...采纳,获得10
19秒前
CipherSage应助xpd采纳,获得30
19秒前
20秒前
Lili完成签到,获得积分10
20秒前
setmefree发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706