Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III

投资组合优化 计算机科学 多目标优化 数学优化 文件夹 最优化问题 稳健优化 投资策略 机器学习 数学 市场流动性 经济 财务 算法
作者
Mengzheng Lv,Jianzhou Wang,Shuai Wang,Jialu Gao,Honggang Guo
出处
期刊:Information Sciences [Elsevier]
卷期号:670: 120549-120549 被引量:13
标识
DOI:10.1016/j.ins.2024.120549
摘要

Portfolio management is a critical aspect of investment strategies, with the goal to balance the low-risk and high-return investments. Despite this, existing portfolios frequently overlook the integration of stock selection outcomes and underutilize data from listed companies, leading to suboptimal portfolio performance. Addressing these shortcomings, this paper introduces a hybrid system involving stock selection and portfolio optimization. In stock selection, the system employs a combination of convolutional neural network and bi-directional recurrent neural network to predict stock trends. This approach enables the identification of stocks likely to appreciate in value, setting the stage for their inclusion in the subsequent optimization process. For portfolio optimization, the study formulates a five-objective optimization problem that incorporates mean, variance, skewness, kurtosis, and distance-to-default as key considerations. To solve the many-objective constrained optimization problem, an advanced strategy employing a static penalty function and an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) based on tent chaotic mapping is utilized. The efficacy of the proposed hybrid system is rigorously tested through three sets of ablation experiments alongside two discussions focused on its robustness and computational efficiency. The findings from these investigations reveal that the hybrid system outperforms traditional approaches, reducing risks and improving returns for investors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助呆萌连碧采纳,获得30
刚刚
zino发布了新的文献求助10
1秒前
善学以致用应助阳6采纳,获得10
1秒前
整齐楼房完成签到,获得积分10
2秒前
Rayson发布了新的文献求助10
2秒前
LEON完成签到,获得积分10
2秒前
jiangjiarui发布了新的文献求助10
3秒前
自信的叫兽完成签到,获得积分10
3秒前
3秒前
开心的紫烟完成签到,获得积分10
3秒前
李健的粉丝团团长应助li采纳,获得10
3秒前
4秒前
无花果应助狂暴的蜗牛0713采纳,获得10
4秒前
tuluiioo完成签到,获得积分20
4秒前
5秒前
小马甲应助懵懂的弱采纳,获得10
6秒前
爱笑的蜗牛完成签到,获得积分10
6秒前
搁浅发布了新的文献求助30
6秒前
彭于晏应助Everglow采纳,获得10
6秒前
7秒前
7秒前
7秒前
bkagyin应助北瑾采纳,获得10
7秒前
共享精神应助卫申燕采纳,获得10
8秒前
脑洞疼应助整齐楼房采纳,获得10
8秒前
banqia完成签到,获得积分10
8秒前
8秒前
8秒前
烟花应助JYJ采纳,获得10
9秒前
烟雨发布了新的文献求助10
9秒前
9秒前
田様应助qy采纳,获得10
9秒前
YUYAN完成签到,获得积分20
9秒前
9秒前
星辰发布了新的文献求助10
10秒前
黄钧垚完成签到,获得积分10
10秒前
科研通AI6.1应助virgo采纳,获得10
11秒前
打打应助tyz采纳,获得10
11秒前
11秒前
大喇叭啦啦啦完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759349
求助须知:如何正确求助?哪些是违规求助? 5519823
关于积分的说明 15393808
捐赠科研通 4896421
什么是DOI,文献DOI怎么找? 2633690
邀请新用户注册赠送积分活动 1581712
关于科研通互助平台的介绍 1537250