Developing a hybrid system for stock selection and portfolio optimization with many-objective optimization based on deep learning and improved NSGA-III

投资组合优化 计算机科学 多目标优化 数学优化 文件夹 最优化问题 稳健优化 投资策略 机器学习 数学 市场流动性 经济 财务 算法
作者
Mengzheng Lv,Jianzhou Wang,Shuai Wang,Jialu Gao,Honggang Guo
出处
期刊:Information Sciences [Elsevier]
卷期号:670: 120549-120549 被引量:5
标识
DOI:10.1016/j.ins.2024.120549
摘要

Portfolio management is a critical aspect of investment strategies, with the goal to balance the low-risk and high-return investments. Despite this, existing portfolios frequently overlook the integration of stock selection outcomes and underutilize data from listed companies, leading to suboptimal portfolio performance. Addressing these shortcomings, this paper introduces a hybrid system involving stock selection and portfolio optimization. In stock selection, the system employs a combination of convolutional neural network and bi-directional recurrent neural network to predict stock trends. This approach enables the identification of stocks likely to appreciate in value, setting the stage for their inclusion in the subsequent optimization process. For portfolio optimization, the study formulates a five-objective optimization problem that incorporates mean, variance, skewness, kurtosis, and distance-to-default as key considerations. To solve the many-objective constrained optimization problem, an advanced strategy employing a static penalty function and an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) based on tent chaotic mapping is utilized. The efficacy of the proposed hybrid system is rigorously tested through three sets of ablation experiments alongside two discussions focused on its robustness and computational efficiency. The findings from these investigations reveal that the hybrid system outperforms traditional approaches, reducing risks and improving returns for investors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUZU完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
pcx完成签到,获得积分10
1秒前
phd完成签到,获得积分10
2秒前
2秒前
曹志毅完成签到,获得积分10
2秒前
mito发布了新的文献求助10
3秒前
无悔呀发布了新的文献求助10
3秒前
4秒前
君君发布了新的文献求助10
4秒前
Yang完成签到,获得积分10
5秒前
风雨完成签到,获得积分10
5秒前
5秒前
6秒前
彭于晏应助小西采纳,获得30
6秒前
可爱的函函应助布布采纳,获得10
7秒前
8秒前
轩辕德地发布了新的文献求助10
8秒前
nine发布了新的文献求助30
8秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
9秒前
JamesPei应助小敦采纳,获得10
9秒前
今非发布了新的文献求助10
9秒前
李健的小迷弟应助通~采纳,获得30
9秒前
9秒前
9秒前
fanfan44390发布了新的文献求助10
9秒前
Zhang完成签到,获得积分10
10秒前
小二郎应助小田采纳,获得10
11秒前
11秒前
隐形曼青应助liike采纳,获得10
11秒前
phd发布了新的文献求助10
11秒前
11秒前
dingdong发布了新的文献求助30
11秒前
Orange应助清秀的语山采纳,获得50
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794