Is silicon worth it? Modelling degradation in composite silicon–graphite lithium-ion battery electrodes

石墨 电池(电) 锂(药物) 电极 材料科学 锂离子电池 电解质 压力(语言学) 复合材料 化学 光电子学 热力学 物理 哲学 语言学 医学 功率(物理) 物理化学 内分泌学
作者
Mayur P. Bonkile,Yang Jiang,Niall Kirkaldy,Valentin Sulzer,Robert Timms,Huizhi Wang,Gregory J. Offer,Billy Wu
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:606: 234256-234256 被引量:11
标识
DOI:10.1016/j.jpowsour.2024.234256
摘要

The addition of silicon into graphite lithium-ion battery anodes has the potential to increase cell energy density. However, understanding the complex degradation behaviour in these composite systems remains a research challenge. Here, we developed a coupled electrochemical–mechanical model of a composite silicon/graphite electrode, including stress-driven crack formation and solid electrolyte interphase layer growth for each material, validated with experimental degradation data from an LG M50T cell. The model reveals self-limiting loss of silicon due to decreasing stress in the silicon as the silicon activity shifts to a lower state-of-charge. Higher C-rates can lead to lower degradation due to lower phase utilisation as voltage cut-offs are reached earlier. Increasing silicon content can reduce the stress in the silicon by distributing reaction current density over more material. Using this model, we explored whether the extra capacity from silicon is generally 'worth' the faster degradation compared to graphite-only electrodes. The model shows if you use the silicon, you lose it, as the higher initial capacity is rapidly lost with regular high depth-of-discharge events. However, silicon does have value if it enables full graphite utilisation without range anxiety; if high depth-of-discharge events are minimised then graphite's superior longevity can be utilised while exploiting silicon's high specific capacity. The model is integrated into PyBaMM (an open-source physics-based modelling platform); providing the research community and industry with the capability to reproduce our results and further explore the dynamic lifetime behaviour of composite electrodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星辰大海应助认真茗采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
ZZyy发布了新的文献求助10
2秒前
Yu完成签到,获得积分10
2秒前
缓慢的白开水完成签到,获得积分10
3秒前
dandan完成签到,获得积分10
3秒前
4秒前
FashionBoy应助orange采纳,获得10
4秒前
4秒前
5秒前
沅芷0871发布了新的文献求助10
5秒前
苏苏发布了新的文献求助10
5秒前
八方来财万事如意完成签到,获得积分10
5秒前
5秒前
lxp完成签到,获得积分10
6秒前
科研民工李完成签到,获得积分10
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
沅芷0871完成签到,获得积分10
9秒前
Danielle发布了新的文献求助10
9秒前
渣渣XM发布了新的文献求助10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
李健应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965