光催化
甲基橙
X射线光电子能谱
催化作用
材料科学
异质结
罗丹明B
化学工程
钛酸钡
废水
降级(电信)
拉曼光谱
纳米技术
化学
陶瓷
环境工程
光电子学
有机化学
复合材料
工程类
电信
物理
光学
计算机科学
作者
Shiqi Zhong,Yabin Wang,Yan Chen,Xingan Jiang,Mei Lin,Cong Lin,Tengfei Lin,Min Gao,Chunlin Zhao,Xiao Wu
标识
DOI:10.1016/j.cej.2024.151002
摘要
Piezo-catalysis is a green and effective method for degrading rich and obstinate molecules in wastewater. Yet, the piezo-catalytic performance of frequently-used barium titanate (BTO) is still limited for practical applications, thus it is crucial to construct high-efficiency BTO-based catalysts. Herein, BiOBr/BTO heterojunction-based piezo-photocatalysts were successfully prepared using the chemical precipitation method, and an internal electric field was established via ultrasound to promote the separation of photogenerated electron-hole pairs through the synergistic effect of piezocatalysis and photocatalysis. Transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy were utilized to characterize the heterojunction. The degradation performance of Rhodamine B (RhB) by BiOBr/BTO is the best among various pollutants, giving a reaction rate constant up to 20.839 × 10−2 min−1, exceeding numerous previously reported catalysts. In addition, the piezo-photocatalytic reaction rate of BiOBr/BTO for Methyl Orange was 9.298 × 10−2 min−1, ≈ 3.3 times than those of pure BTO (2.806 × 10−2 min−1), and also ≈ 15.9 times and 3.3 times than those of single photocatalysis (0.585 × 10−2 min−1) or piezocatalysis (2.848 × 10−2 min−1). Importantly, the BiOBr/BTO heterojunction demonstrates excellent catalytic degradation performance for a broad range of pollutants (e.g., dyes and antibiotics) and their mixtures, as well as favorable cycling stability and repeatability with changed environmental conditions, displaying applicability in actual wastewater treatment. The possible degradation pathways of RhB were analyzed by liquid chromatography-mass spectrometry. The present work supplies a feasible strategy for the preparation of high-efficiency piezo-photocatalytic BTO-based heterojunctions, which can guide other composites for environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI