摘要
Abstract The incredible characteristics of nanomaterial and the benefits of optical fiber may be
coupled to provide an exciting new platform for sensing applications. In recent years, there has been significant development and documentation of numerous gas and humidity sensors utilizing optical fiber based on 2D nanomaterials. This review primarily examines the most recent implementations in fiberoptic gas and humidity sensing through 2D nanomaterials. With the help of nanomaterial, researchers may be able to fine-tune sensor parameters like thickness, roughness, specific area, refractive index, etc. This could make it possible for sensors to respond faster or to be more sensitive than standard sensors. Optical sensors are a family of devices that use different types of light interactions (i.e., photon–atom) to sense, analyze, and measure molecules for various purposes. Optical sensors are capable of detecting light, often within a narrow band of the electromagnetic spectrum (ultraviolet, visible, and infrared). A fiber optic sensor is an optical device that transforms the physical state of the object being measured into a quantifiable optical signal. Based on the photoelectric effect, the sensor detects light’s wavelength, frequency, or polarisation and transforms it into an electric signal. This review describes the state-of the-art research in this rapidly evolving sector, impacting sensor type, structure, synthesis, deposition process, detection range, sensitivity, response & recovery time, and application of 2D materials. Lastly, the problems that are currently in the way of using 2D materials in sensor applications are talked about,
as well as what the future might hold.