Machine-learning–based plasma metabolomic profiles for predicting long-term complications of cirrhosis

医学 肝硬化 期限(时间) 内科学 代谢组学 计算机科学 化学 色谱法 物理 量子力学
作者
Chengnan Guo,Zhenqiu Liu,Fan Hong,Haili Wang,Xin Zhang,Shuzhen Zhao,Yi Li,Xinyu Han,Tianye Wang,Xingdong Chen,Tiejun Zhang
出处
期刊:Hepatology [Wiley]
被引量:3
标识
DOI:10.1097/hep.0000000000000879
摘要

Background and Aims: The complications of liver cirrhosis occur after long asymptomatic stages of progressive fibrosis and are generally diagnosed late. We aimed to develop a plasma metabolomic–based score tool to predict these events. Approach and Results: We enrolled 64,005 UK biobank participants with metabolomic profiles. Participants were randomly divided into the training (n=43,734) and validation cohorts (n=20,271). Liver cirrhosis complications were defined as hospitalization for liver cirrhosis or presentation with HCC. An interpretable machine-learning framework was applied to learn the metabolomic states extracted from 168 circulating metabolites in the training cohort. An integrated nomogram was developed and compared to conventional and genetic risk scores. We created 3 groups: low-risk, middle-risk, and high-risk through selected cutoffs of the nomogram. The predictive performance was validated through the area under a time-dependent receiver operating characteristic curve (time-dependent AUC), calibration curves, and decision curve analysis. The metabolomic state model could accurately predict the 10-year risk of liver cirrhosis complications in the training cohort (time-dependent AUC: 0.84 [95% CI: 0.82–0.86]), and outperform the fibrosis-4 index (time-dependent AUC difference: 0.06 [0.03–0.10]) and polygenic risk score (0.25 [0.21–0.29]). The nomogram, integrating metabolomic state, aspartate aminotransferase, platelet count, waist/hip ratio, and smoking status showed a time-dependent AUC of 0.930 at 3 years, 0.889 at 5 years, and 0.861 at 10 years in the validation cohort, respectively. The HR in the high-risk group was 43.58 (95% CI: 27.08–70.12) compared with the low-risk group. Conclusions: We developed a metabolomic state–integrated nomogram, which enables risk stratification and personalized administration of liver-related events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Vincy采纳,获得10
1秒前
1秒前
qq完成签到,获得积分10
2秒前
2秒前
Adeline发布了新的文献求助10
4秒前
科研通AI2S应助瓜瓜采纳,获得10
6秒前
7秒前
扶光完成签到,获得积分10
8秒前
9秒前
11秒前
Erick完成签到,获得积分10
11秒前
12秒前
wangxuhui1978发布了新的文献求助10
13秒前
Victoria关注了科研通微信公众号
13秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
Owen应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
lyc发布了新的文献求助10
23秒前
24秒前
化石吟完成签到,获得积分10
25秒前
27秒前
zhu97发布了新的文献求助10
30秒前
松松果发布了新的文献求助10
30秒前
123完成签到,获得积分10
31秒前
31秒前
田様应助格子布采纳,获得10
36秒前
37秒前
标致的乐驹完成签到,获得积分20
38秒前
38秒前
41秒前
啦啦啦喽完成签到,获得积分10
42秒前
42秒前
43秒前
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141291
求助须知:如何正确求助?哪些是违规求助? 2792288
关于积分的说明 7802124
捐赠科研通 2448479
什么是DOI,文献DOI怎么找? 1302606
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237