Machine-learning–based plasma metabolomic profiles for predicting long-term complications of cirrhosis

医学 肝硬化 期限(时间) 内科学 代谢组学 计算机科学 化学 色谱法 物理 量子力学
作者
Chengnan Guo,Zhenqiu Liu,Hong Fan,Haili Wang,Xin Zhang,Shuzhen Zhao,Yi Li,Xinyu Han,Tianye Wang,Xingdong Chen,Tiejun Zhang
出处
期刊:Hepatology [Lippincott Williams & Wilkins]
被引量:7
标识
DOI:10.1097/hep.0000000000000879
摘要

Background and Aims: The complications of liver cirrhosis occur after long asymptomatic stages of progressive fibrosis and are generally diagnosed late. We aimed to develop a plasma metabolomic–based score tool to predict these events. Approach and Results: We enrolled 64,005 UK biobank participants with metabolomic profiles. Participants were randomly divided into the training (n=43,734) and validation cohorts (n=20,271). Liver cirrhosis complications were defined as hospitalization for liver cirrhosis or presentation with HCC. An interpretable machine-learning framework was applied to learn the metabolomic states extracted from 168 circulating metabolites in the training cohort. An integrated nomogram was developed and compared to conventional and genetic risk scores. We created 3 groups: low-risk, middle-risk, and high-risk through selected cutoffs of the nomogram. The predictive performance was validated through the area under a time-dependent receiver operating characteristic curve (time-dependent AUC), calibration curves, and decision curve analysis. The metabolomic state model could accurately predict the 10-year risk of liver cirrhosis complications in the training cohort (time-dependent AUC: 0.84 [95% CI: 0.82–0.86]), and outperform the fibrosis-4 index (time-dependent AUC difference: 0.06 [0.03–0.10]) and polygenic risk score (0.25 [0.21–0.29]). The nomogram, integrating metabolomic state, aspartate aminotransferase, platelet count, waist/hip ratio, and smoking status showed a time-dependent AUC of 0.930 at 3 years, 0.889 at 5 years, and 0.861 at 10 years in the validation cohort, respectively. The HR in the high-risk group was 43.58 (95% CI: 27.08–70.12) compared with the low-risk group. Conclusions: We developed a metabolomic state–integrated nomogram, which enables risk stratification and personalized administration of liver-related events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柯续缘完成签到,获得积分10
1秒前
科研通AI5应助辉hui采纳,获得10
1秒前
1秒前
Frank发布了新的文献求助10
1秒前
CipherSage应助科研r采纳,获得10
2秒前
2秒前
鑫渊完成签到,获得积分10
3秒前
3秒前
笑点低胡萝卜完成签到,获得积分10
3秒前
有何丿不可给18166992885的求助进行了留言
4秒前
丘比特应助无奈沛白采纳,获得10
4秒前
kkk完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Jasper应助hs采纳,获得10
5秒前
柔弱嵩完成签到,获得积分10
5秒前
Zpiao完成签到,获得积分20
6秒前
zzz完成签到,获得积分10
6秒前
桐桐应助薄饼哥丶采纳,获得10
6秒前
7秒前
刘荻萩应助柯续缘采纳,获得20
7秒前
小象完成签到,获得积分20
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
朱朱完成签到,获得积分10
8秒前
小斌应助生产队的建设者采纳,获得10
8秒前
8秒前
123发布了新的文献求助10
8秒前
siyuwang1234完成签到,获得积分10
9秒前
微笑天磊完成签到,获得积分20
9秒前
科研通AI5应助佳丽采纳,获得10
9秒前
obito发布了新的文献求助10
9秒前
9秒前
10秒前
再睡一夏完成签到,获得积分10
10秒前
坦率的凉面完成签到,获得积分10
11秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775