To address the increasing environmental pollution and health challenges, it is crucial to explore multifunctional materials that leverage synergistic photo/electro-thermal effects. This research introduces innovative Ta4C3TX/graphene aerogels (Ta4C3TX/GAs) with outstanding photo/electro-thermal conversion capabilities for versatile applications. The distinctive structural characteristics of Ta4C3TX/GAs, achieved through a preparation process involving hydrothermal and freeze-drying methods, include a hierarchical porous structure, low density, large specific surface area, and remarkable flexibility. These aerogels exhibit excellent physicochemical properties, such as high sunlight absorption, electrical conductivity, and long-term stability, enabling them to efficiently perform combined photo/electro-thermal functions. Under sunlight irradiation (1 sun), Ta4C3TX/GAs quickly reached a surface temperature of 90.2 °C within 1 min. When subjected to a 4 V voltage, they achieved a high electro-heating temperature of 134.2 °C within 5 s. By leveraging their photo/electro-thermal capabilities, Ta4C3TX/GAs were effectively utilized in seawater steam generation, thermal therapy, deicing, and high-viscosity oil absorption. Notably, for seawater steam generation, these aerogels exhibited a high evaporation rate of 1.43 kg m−2 h−1 with a photothermal conversion efficiency of 90.06 % under 1 sun irradiation. Additionally, Ta4C3TX/GAs have proved to be efficient heaters in photothermal therapy and photo/electro-thermal deicing, with the added benefit of being able to absorb high-viscosity oils due to their photothermal heating capability. Overall, this study provides valuable insights for the advancement of photo/electro-thermal multifunctional aerogel-based materials.