MMSyn: A New Multimodal Deep Learning Framework for Enhanced Prediction of Synergistic Drug Combinations

药品 深度学习 计算机科学 人工智能 多层感知器 感知器 机器学习 药理学 人工神经网络 生物
作者
Yu Pang,Yihao Chen,Mujie Lin,Yanhong Zhang,Jiquan Zhang,Ling Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (9): 3689-3705
标识
DOI:10.1021/acs.jcim.4c00165
摘要

Combination therapy is a promising strategy for the successful treatment of cancer. The large number of possible combinations, however, mean that it is laborious and expensive to screen for synergistic drug combinations in vitro. Nevertheless, because of the availability of high-throughput screening data and advances in computational techniques, deep learning (DL) can be a useful tool for the prediction of synergistic drug combinations. In this study, we proposed a multimodal DL framework, MMSyn, for the prediction of synergistic drug combinations. First, features embedded in the drug molecules were extracted: structure, fingerprint, and string encoding. Then, gene expression data, DNA copy number, and pathway activity were used to describe cancer cell lines. Finally, these processed features were integrated using an attention mechanism and an interaction module and then input into a multilayer perceptron to predict drug synergy. Experimental results showed that our method outperformed five state-of-the-art DL methods and three traditional machine learning models for drug combination prediction. We verified that MMSyn achieved superior performance in stratified cross-validation settings using both the drug combination and cell line data. Moreover, we performed a set of ablation experiments to illustrate the effectiveness of each component and the efficacy of our model. In addition, our visual representation and case studies further confirmed the effectiveness of our model. All results showed that MMSyn can be used as a powerful tool for the prediction of synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惊执虫儿发布了新的文献求助10
4秒前
Wxj246801完成签到,获得积分20
4秒前
Qiao完成签到 ,获得积分10
4秒前
6秒前
7秒前
9秒前
科研通AI2S应助小武wwwww采纳,获得10
9秒前
10秒前
10秒前
孙栋发布了新的文献求助10
11秒前
11秒前
halo发布了新的文献求助10
13秒前
能干大树发布了新的文献求助10
13秒前
丘比特应助Q123ba叭采纳,获得10
14秒前
15秒前
15秒前
fuje发布了新的文献求助30
17秒前
17秒前
17秒前
贪玩手链发布了新的文献求助10
19秒前
19秒前
啊帅完成签到,获得积分10
20秒前
20秒前
20秒前
请叫我表情帝完成签到 ,获得积分10
21秒前
能干大树完成签到,获得积分10
21秒前
21秒前
22秒前
惊执虫儿完成签到,获得积分10
24秒前
24秒前
Cheng完成签到 ,获得积分10
24秒前
25秒前
hhh发布了新的文献求助30
25秒前
26秒前
JJ完成签到,获得积分10
26秒前
26秒前
27秒前
幸福大白发布了新的文献求助10
27秒前
单纯面包应助无敌小宽哥采纳,获得10
28秒前
Q123ba叭发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954