MMSyn: A New Multimodal Deep Learning Framework for Enhanced Prediction of Synergistic Drug Combinations

药品 深度学习 计算机科学 人工智能 多层感知器 感知器 机器学习 药理学 人工神经网络 生物
作者
Yu Pang,Yihao Chen,Mujie Lin,Yanhong Zhang,Jiquan Zhang,Ling Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (9): 3689-3705 被引量:1
标识
DOI:10.1021/acs.jcim.4c00165
摘要

Combination therapy is a promising strategy for the successful treatment of cancer. The large number of possible combinations, however, mean that it is laborious and expensive to screen for synergistic drug combinations in vitro. Nevertheless, because of the availability of high-throughput screening data and advances in computational techniques, deep learning (DL) can be a useful tool for the prediction of synergistic drug combinations. In this study, we proposed a multimodal DL framework, MMSyn, for the prediction of synergistic drug combinations. First, features embedded in the drug molecules were extracted: structure, fingerprint, and string encoding. Then, gene expression data, DNA copy number, and pathway activity were used to describe cancer cell lines. Finally, these processed features were integrated using an attention mechanism and an interaction module and then input into a multilayer perceptron to predict drug synergy. Experimental results showed that our method outperformed five state-of-the-art DL methods and three traditional machine learning models for drug combination prediction. We verified that MMSyn achieved superior performance in stratified cross-validation settings using both the drug combination and cell line data. Moreover, we performed a set of ablation experiments to illustrate the effectiveness of each component and the efficacy of our model. In addition, our visual representation and case studies further confirmed the effectiveness of our model. All results showed that MMSyn can be used as a powerful tool for the prediction of synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
L-g-b完成签到,获得积分10
1秒前
杨多多完成签到,获得积分10
1秒前
LLLLLL完成签到,获得积分10
1秒前
www完成签到,获得积分10
2秒前
lenon发布了新的文献求助10
2秒前
1111发布了新的文献求助10
3秒前
4秒前
机智傀斗完成签到,获得积分10
4秒前
善良天抒完成签到 ,获得积分20
4秒前
宇宙中心发布了新的文献求助10
4秒前
小蘑菇应助吕方采纳,获得10
4秒前
夙夙发布了新的文献求助10
5秒前
TP完成签到,获得积分10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得30
6秒前
916应助科研通管家采纳,获得10
6秒前
Bio应助felix采纳,获得50
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
Bio应助科研通管家采纳,获得10
6秒前
GEeZiii发布了新的文献求助10
6秒前
916应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
lucyliu完成签到 ,获得积分10
6秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得20
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650