Study on Influence Factors of H2O2 Generation Efficiency on Both Cathode and Anode in a Diaphragm-Free Bath

阳极 电解质 阴极 电解 材料科学 振膜(声学) 无机化学 化学工程 电合成 电解水 化学 电极 电化学 工程类 扬声器 物理化学 物理 声学
作者
Tian Tian,Zhaohui Wang,Kun Li,Honglei Jin,Yang Tang,Yanzhi Sun,Pingyu Wan,Yongmei Chen
出处
期刊:Materials [MDPI AG]
卷期号:17 (8): 1748-1748
标识
DOI:10.3390/ma17081748
摘要

Electrosynthesis of H2O2 via both pathways of anodic two-electron water oxidation reaction (2e-WOR) and cathodic two-electron oxygen reduction reaction (2e-ORR) in a diaphragm-free bath can not only improve the generation rate and Faraday efficiency (FE), but also simplify the structure of the electrolysis bath and reduce the energy consumption. The factors that may affect the efficiency of H2O2 generation in coupled electrolytic systems have been systematically investigated. A piece of fluorine-doped tin oxide (FTO) electrode was used as the anode, and in this study, its catalytic performance for 2e-WOR in Na2CO3/NaHCO3 and NaOH solutions was compared. Based on kinetic views, the generation rate of H2O2 via 2e-WOR, the self-decomposition, and the oxidative decomposition rate of the generated H2O2 during electrolysis in carbonate electrolytes were investigated. Furthermore, by choosing polyethylene oxide-modified carbon nanotubes (PEO-CNTs) as the catalyst for 2e-ORR and using its loaded electrode as the cathode, the coupled electrolytic systems for H2O2 generation were set up in a diaphragm bath and in a diaphragm-free bath. It was found that the generated H2O2 in the electrolyte diffuses and causes oxidative decomposition on the anode, which is the main influent factor on the accumulated concentration in H2O2 in a diaphragm-free bath.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
woody完成签到,获得积分10
刚刚
许译匀发布了新的文献求助10
刚刚
2秒前
zyh完成签到 ,获得积分10
2秒前
HHHAN完成签到,获得积分10
2秒前
3秒前
Doris发布了新的文献求助30
3秒前
4秒前
4秒前
guozizi发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
lemon发布了新的文献求助10
7秒前
LILI完成签到,获得积分10
7秒前
斯文败类应助智者采纳,获得10
7秒前
Tian完成签到,获得积分10
8秒前
hwasaa完成签到,获得积分10
8秒前
在水一方应助小鱼采纳,获得10
8秒前
aujsdhab应助炙热尔烟采纳,获得10
9秒前
袁琴发布了新的文献求助10
9秒前
平淡广山完成签到,获得积分10
10秒前
诸岩完成签到,获得积分10
10秒前
11秒前
11秒前
彭于晏应助阿盖采纳,获得10
11秒前
ding应助lemon采纳,获得10
12秒前
科研通AI2S应助####采纳,获得10
12秒前
wanci应助我不喜欢吃蔬菜采纳,获得10
12秒前
阿龙发布了新的文献求助10
12秒前
甜美枫完成签到,获得积分10
14秒前
跑快点发布了新的文献求助10
14秒前
16秒前
舒苏应助科研通管家采纳,获得60
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
好好应助科研通管家采纳,获得10
16秒前
buno应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605