In Situ Growth of Wafer‐Scale Patterned Graphene and Fabrication of Optoelectronic Artificial Synaptic Device Array Based on Graphene/n‐AlGaN Heterojunction for Visual Learning

石墨烯 材料科学 薄脆饼 异质结 神经形态工程学 纳米技术 光电子学 制作 计算机科学 人工神经网络 人工智能 医学 病理 替代医学
作者
Yang Chen,Zhiming Shi,Bingchen Lv,Wei Zhang,Shanli Zhang,Hang Zang,Yuanyuan Yue,Ke Jiang,Jianwei Ben,Yuping Jia,Mingrui Liu,Shunpeng Lü,Rui Sun,Tong Wu,Shaojuan Li,Xiaojuan Sun,Dabing Li
出处
期刊:Small [Wiley]
卷期号:20 (34) 被引量:1
标识
DOI:10.1002/smll.202401150
摘要

Abstract The unique optical and electrical properties of graphene‐based heterojunctions make them significant for artificial synaptic devices, promoting the advancement of biomimetic vision systems. However, mass production and integration of device arrays are necessary for visual imaging, which is still challenging due to the difficulty in direct growth of wafer‐scale graphene patterns. Here, a novel strategy is proposed using photosensitive polymer as a solid carbon source for in situ growth of patterned graphene on diverse substrates. The growth mechanism during high‐temperature annealing is elucidated, leading to wafer‐scale graphene patterns with exceptional uniformity, ideal crystalline quality, and precise control over layer number by eliminating the release of volatile from oxygen‐containing resin. The growth strategy enables the fabrication of two‐inch optoelectronic artificial synaptic device array based on graphene/n‐AlGaN heterojunction, which emulates key functionalities of biological synapses, including short‐term plasticity, long‐term plasticity, and spike‐rate‐dependent plasticity. Moreover, the mimicry of visual learning in the human brain is attributed to the regulation of excitatory and inhibitory post‐synapse currents, following a learning rule that prioritizes initial recognition before memory formation. The duration of long‐term memory reaches 10 min. The in situ growth strategy for patterned graphene represents the novelty for fabricating fundamental hardware of an artificial neuromorphic system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
刚刚
Hilda007应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
wanci应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
1秒前
guozizi应助科研通管家采纳,获得100
1秒前
watgos应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
dew应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得30
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
今后应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Zx_1993应助科研通管家采纳,获得20
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
zik应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
zgrmws应助科研通管家采纳,获得20
2秒前
Owen应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
zgggggggggg应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
3秒前
dew应助科研通管家采纳,获得10
3秒前
wanghaha完成签到,获得积分10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
strangeliu完成签到,获得积分10
3秒前
nono完成签到 ,获得积分10
3秒前
3秒前
合欢发布了新的文献求助10
3秒前
英俊的铭应助稳重惜灵采纳,获得10
3秒前
张一一完成签到,获得积分10
3秒前
欣喜亚男完成签到,获得积分10
3秒前
YOLO完成签到,获得积分10
4秒前
挽风完成签到 ,获得积分10
4秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671