Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization

集成学习 计算机科学 人工智能 聚类分析 正规化(语言学) 机器学习 集合预报 一般化 堆积 数据挖掘 模式识别(心理学) 数学 核磁共振 物理 数学分析
作者
Jiaqi Shi,Chenxi Li,Xiaohe Yan
出处
期刊:Energy [Elsevier]
卷期号:262: 125295-125295 被引量:59
标识
DOI:10.1016/j.energy.2022.125295
摘要

State-of-art artificial intelligence (AI) has made great breakthroughs in various industries. Ensemble learning mixed with various predictors provides a considerable solution for electric load forecasting in power system. In our paper, the generalization error of ensemble learning is statistically decomposed to exhibit the significance of base-learner diversity. A diversity regularized Stacking learning approach is proposed to solve the electric load forecasting issue. In our model, the input features are comprehensively selected by various tree-based embedded methods to understand the feature contribution. The robust candidate base-learners are extracted from sub-model pool depending on diversity regularization besides the individual learning capability. Mutual information theory and hierarchical clustering quantitatively assess the dissimilarity degree among base-leaners by exploiting error distribution. The Stacking ensemble framework is utilized to avoid the over-fitting occurrence by employing leave-one-out data splitting procedure for raw dataset block. At last, various cases from different time horizons or geographical scopes are deployed to verify the validity of the model. The case shows that the diversity regularized Stacking learning has better prediction performance compared with the traditional ensemble model or single model. Load forecasting results become more accurate and stable when elaborately selecting base-learners portfolio.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观期待完成签到,获得积分10
刚刚
Ranqi应助科研通管家采纳,获得10
1秒前
1秒前
xcgh应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
心想事成应助科研通管家采纳,获得10
1秒前
帅玉玉完成签到,获得积分10
1秒前
III完成签到,获得积分10
3秒前
5秒前
8秒前
Frank应助Whr采纳,获得10
8秒前
Imp发布了新的文献求助10
9秒前
李健应助王子怡采纳,获得10
10秒前
11秒前
LANER完成签到 ,获得积分10
12秒前
12秒前
crabbbb68发布了新的文献求助10
14秒前
16秒前
无尘泪完成签到,获得积分10
17秒前
ChangShengtzu完成签到 ,获得积分10
18秒前
欢喜吐司发布了新的文献求助10
19秒前
20秒前
vvvg发布了新的文献求助10
22秒前
22秒前
传奇3应助lucas采纳,获得10
23秒前
coolcat完成签到 ,获得积分10
23秒前
Hello应助无名采纳,获得10
24秒前
aliu发布了新的文献求助10
25秒前
汤钰寒发布了新的文献求助10
26秒前
27秒前
VV2VV发布了新的文献求助20
27秒前
30秒前
欢喜吐司完成签到,获得积分10
31秒前
Ran-HT完成签到,获得积分0
35秒前
双人余发布了新的文献求助10
38秒前
Owen应助yu采纳,获得10
40秒前
41秒前
aliu完成签到,获得积分10
42秒前
汤钰寒完成签到,获得积分10
43秒前
ding应助邪恶苹果大王采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565757
求助须知:如何正确求助?哪些是违规求助? 4650714
关于积分的说明 14692753
捐赠科研通 4592754
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492140
关于科研通互助平台的介绍 1463316