Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization

集成学习 计算机科学 人工智能 聚类分析 正规化(语言学) 机器学习 集合预报 一般化 堆积 数据挖掘 模式识别(心理学) 数学 核磁共振 物理 数学分析
作者
Jiaqi Shi,Chenxi Li,Xiaohe Yan
出处
期刊:Energy [Elsevier BV]
卷期号:262: 125295-125295 被引量:59
标识
DOI:10.1016/j.energy.2022.125295
摘要

State-of-art artificial intelligence (AI) has made great breakthroughs in various industries. Ensemble learning mixed with various predictors provides a considerable solution for electric load forecasting in power system. In our paper, the generalization error of ensemble learning is statistically decomposed to exhibit the significance of base-learner diversity. A diversity regularized Stacking learning approach is proposed to solve the electric load forecasting issue. In our model, the input features are comprehensively selected by various tree-based embedded methods to understand the feature contribution. The robust candidate base-learners are extracted from sub-model pool depending on diversity regularization besides the individual learning capability. Mutual information theory and hierarchical clustering quantitatively assess the dissimilarity degree among base-leaners by exploiting error distribution. The Stacking ensemble framework is utilized to avoid the over-fitting occurrence by employing leave-one-out data splitting procedure for raw dataset block. At last, various cases from different time horizons or geographical scopes are deployed to verify the validity of the model. The case shows that the diversity regularized Stacking learning has better prediction performance compared with the traditional ensemble model or single model. Load forecasting results become more accurate and stable when elaborately selecting base-learners portfolio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
愉快之槐应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
young应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI2S应助WQY采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
徐徐完成签到,获得积分10
1秒前
CyrusSo524应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得30
1秒前
1sunpf完成签到,获得积分10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
wen完成签到,获得积分10
2秒前
luxkex完成签到,获得积分10
2秒前
2秒前
务实大神完成签到,获得积分10
3秒前
求大佬帮助完成签到,获得积分10
3秒前
dodo应助ElbingX采纳,获得300
4秒前
5秒前
vander完成签到,获得积分10
5秒前
jam发布了新的文献求助10
5秒前
斯文败类应助livialiu采纳,获得10
5秒前
致行完成签到,获得积分10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051