光电阴极
光电流
分解水
氢
材料科学
纳米线
氧化物
光电化学电池
半导体
电极
光电子学
纳米技术
化学工程
电解质
化学
电子
光催化
物理
催化作用
物理化学
工程类
有机化学
冶金
量子力学
生物化学
作者
Xue Zhou,Baihe Fu,Linjuan Li,Zheng Tian,Xiankui Xu,Zihao Wu,Jing Yang,Zhonghai Zhang
标识
DOI:10.1038/s41467-022-33445-z
摘要
Photoelectrochemical (PEC) water splitting is an appealing approach for "green" hydrogen generation. The natural p-type semiconductor of Cu2O is one of the most promising photocathode candidates for direct hydrogen generation. However, the Cu2O-based photocathodes still suffer severe self-photo-corrosion and fast surface electron-hole recombination issues. Herein, we propose a facile in-situ encapsulation strategy to protect Cu2O with hydrogen-substituted graphdiyne (HsGDY) and promote water reduction performance. The HsGDY encapsulated Cu2O nanowires (HsGDY@Cu2O NWs) photocathode demonstrates a high photocurrent density of -12.88 mA cm-2 at 0 V versus the reversible hydrogen electrode under 1 sun illumination, approaching to the theoretical value of Cu2O. The HsGDY@Cu2O NWs photocathode as well as presents excellent stability and contributes an impressive hydrogen generation rate of 218.2 ± 11.3 μmol h-1cm-2, which value has been further magnified to 861.1 ± 24.8 μmol h-1cm-2 under illumination of concentrated solar light. The in-situ encapsulation strategy opens an avenue for rational design photocathodes for efficient and stable PEC water reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI