Revealing the pH-dependent mechanism of nitrate electrochemical reduction to ammonia on single-atom catalysts

催化作用 电化学 硝酸盐 吸附 氨生产 无机化学 选择性 化学 密度泛函理论 溶解 计算化学 电极 物理化学 有机化学
作者
Jingjing Yan,Haoxiang Xu,Le Chang,Aijun Lin,Daojian Cheng
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (41): 15422-15431 被引量:14
标识
DOI:10.1039/d2nr02545k
摘要

Nitrate electrochemical reduction to ammonia (NO3RR) catalyzed by single-atom catalysts (SACs) is an attractive and efficient way for solving the problem of nitrate pollution in water and obtaining valuable product ammonia through low temperature synthesis. It is well known that the pH conditions can be regulated to tune the performance of NO3RR, however, there have been few studies aimed at gaining theoretical insight into the origin of pH-dependent catalytic performance among SACs. Herein, taking 3d-transition metal (Fe, Co, Ni and Mn) single-atoms supported on diverse anchor sites of MoS2 as an example (SA-MoS2), we explore the activity and selectivity for NO3RR towards ammonia (NH3 and NH4+) under different pH conditions by density functional theory calculations. It is found that priority reaction pathways, the potential determining step and limiting potentials of SA-MoS2 exhibit pH-dependent characteristics, which can be described by a contour map of catalytic reactivity, spanned by adsorption free energies (GNO* and GNH2*), and further determined by local coordination environment and electronic states of active sites. Our three-step screening method reveals that the Co single-atom adsorbed MoS2 edge catalyst is the most promising catalyst among the studied SA-MoS2 because of its low limiting potential (-0.3-0.4 V, RHE), excellent selectivity in the competition with the hydrogen evolution reaction (HER), as well as stability against aggregation and electrochemical dissolution across the full pH range. This work demonstrates a theoretical insight into the pH-dependent mechanism of supported SA catalyzed NO3RR, which proposes a screening strategy for finding new SACs, and provides motivation for further experimental exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俺的步行街完成签到,获得积分10
刚刚
领导范儿应助科研老头采纳,获得10
刚刚
1秒前
BioGO发布了新的文献求助10
1秒前
1秒前
2秒前
香蕉觅云应助朱朱采纳,获得10
2秒前
充电宝应助ddrose采纳,获得10
3秒前
Owen应助杜兰特工队采纳,获得30
3秒前
舒适新蕾完成签到,获得积分10
3秒前
汉堡包应助小林采纳,获得10
3秒前
有魅力友梅完成签到,获得积分20
3秒前
4秒前
科研通AI2S应助小嘎采纳,获得10
5秒前
李志全发布了新的文献求助10
6秒前
NaCl发布了新的文献求助10
7秒前
8秒前
9秒前
andy发布了新的文献求助30
9秒前
10秒前
mong完成签到,获得积分10
10秒前
迟大猫应助lucas采纳,获得10
11秒前
11秒前
Tici发布了新的文献求助10
11秒前
今后应助du采纳,获得10
11秒前
11秒前
11秒前
科研老头发布了新的文献求助10
12秒前
13秒前
13秒前
liuarise发布了新的文献求助10
14秒前
zhuj11应助mt采纳,获得10
14秒前
14秒前
迟大猫应助八段锦采纳,获得10
15秒前
15秒前
魔幻涵瑶关注了科研通微信公众号
15秒前
Y.完成签到,获得积分10
16秒前
kakiyu发布了新的文献求助10
16秒前
小二郎应助三时寒采纳,获得10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331