A novel deep learning package for electrocardiography research

计算机科学 深度学习 人工智能 人工神经网络 机器学习 预处理器 可扩展性 信号处理 数据预处理 数据挖掘 数字信号处理 计算机硬件 数据库
作者
Hao Wen,Jingsu Kang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (11): 115006-115006 被引量:2
标识
DOI:10.1088/1361-6579/ac9451
摘要

Objective. In recent years, deep learning has blossomed in the field of electrocardiography (ECG) processing, outperforming traditional signal processing methods in a number of typical tasks; for example, classification, QRS detection and wave delineation. Although many neural architectures have been proposed in the literature, there is a lack of systematic studies and open-source libraries for ECG deep learning.Approach. In this paper, we propose a deep learning package, namedtorch_ecg, which assembles a large number of neural networks, from existing and novel literature, for various ECG processing tasks. The models are designed to be able to be automatically built from configuration files that contain a large set of configurable hyperparameters, making it convenient to scale the networks and perform neural architecture searching.torch_ecghas well-organized data processing modules, which contain utilities for data downloading, visualization, preprocessing and augmentation. To make the whole system more user-friendly, a series of helper modules are implemented, including model trainers, metric computation and loggers.Main results.torch_ecgestablishes a convenient and modular way for automatic building and flexible scaling of networks, as well as a neat and uniform way of organizing the preprocessing procedures and augmentation techniques for preparing the input data for the models. In addition,torch_ecgprovides benchmark studies using the latest databases, illustrating the principles and pipelines for solving ECG processing tasks and reproducing results from the literature.Significance.torch_ecgoffers the ECG research community a powerful tool for meeting the growing demand for the application of deep learning techniques. The code is available athttps://github.com/DeepPSP/torch_ecg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋听寒完成签到,获得积分10
1秒前
1秒前
百事从欢发布了新的文献求助10
3秒前
4秒前
5秒前
木风完成签到,获得积分10
5秒前
风格化橙发布了新的文献求助10
5秒前
6秒前
小杭76应助香菜农场主采纳,获得10
7秒前
所所应助番茄豆丁采纳,获得80
7秒前
8秒前
8秒前
共享精神应助何雨航采纳,获得10
8秒前
小袁完成签到 ,获得积分10
10秒前
搜集达人应助John采纳,获得10
10秒前
英俊发布了新的文献求助10
12秒前
顾矜应助张梦迪采纳,获得10
12秒前
12秒前
12秒前
小南发布了新的文献求助10
12秒前
13秒前
13秒前
含蓄的鹤发布了新的文献求助20
14秒前
yuyuyuan完成签到,获得积分10
15秒前
爆米花应助木心长采纳,获得10
15秒前
娜行完成签到 ,获得积分10
15秒前
caohuijun发布了新的文献求助10
16秒前
Akim应助JasonSun采纳,获得30
18秒前
22秒前
孤独梦安完成签到 ,获得积分10
22秒前
英俊完成签到,获得积分10
22秒前
乐乐应助风格化橙采纳,获得10
23秒前
喜悦发卡完成签到,获得积分10
24秒前
活力的泥猴桃完成签到 ,获得积分10
25秒前
26秒前
xinxinwen完成签到,获得积分10
26秒前
27秒前
27秒前
EMMA发布了新的文献求助10
28秒前
Cc关闭了Cc文献求助
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452