A novel deep learning package for electrocardiography research

计算机科学 深度学习 人工智能 人工神经网络 机器学习 预处理器 可扩展性 信号处理 数据预处理 数据挖掘 数字信号处理 计算机硬件 数据库
作者
Hao Wen,Jingsu Kang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (11): 115006-115006 被引量:2
标识
DOI:10.1088/1361-6579/ac9451
摘要

Objective. In recent years, deep learning has blossomed in the field of electrocardiography (ECG) processing, outperforming traditional signal processing methods in a number of typical tasks; for example, classification, QRS detection and wave delineation. Although many neural architectures have been proposed in the literature, there is a lack of systematic studies and open-source libraries for ECG deep learning.Approach. In this paper, we propose a deep learning package, namedtorch_ecg, which assembles a large number of neural networks, from existing and novel literature, for various ECG processing tasks. The models are designed to be able to be automatically built from configuration files that contain a large set of configurable hyperparameters, making it convenient to scale the networks and perform neural architecture searching.torch_ecghas well-organized data processing modules, which contain utilities for data downloading, visualization, preprocessing and augmentation. To make the whole system more user-friendly, a series of helper modules are implemented, including model trainers, metric computation and loggers.Main results.torch_ecgestablishes a convenient and modular way for automatic building and flexible scaling of networks, as well as a neat and uniform way of organizing the preprocessing procedures and augmentation techniques for preparing the input data for the models. In addition,torch_ecgprovides benchmark studies using the latest databases, illustrating the principles and pipelines for solving ECG processing tasks and reproducing results from the literature.Significance.torch_ecgoffers the ECG research community a powerful tool for meeting the growing demand for the application of deep learning techniques. The code is available athttps://github.com/DeepPSP/torch_ecg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行程完成签到,获得积分20
刚刚
qw1完成签到,获得积分20
刚刚
刚刚
smile发布了新的文献求助10
刚刚
liu完成签到,获得积分10
1秒前
雪白莹芝完成签到,获得积分20
1秒前
1秒前
直率翠绿完成签到,获得积分10
1秒前
顺心靖雁完成签到,获得积分10
1秒前
乐乐应助谭歆柔采纳,获得10
1秒前
lumos完成签到,获得积分10
2秒前
2秒前
huang完成签到,获得积分10
2秒前
2秒前
dypdyp应助阿黎采纳,获得10
3秒前
七友完成签到,获得积分10
4秒前
旺旺旺完成签到,获得积分10
4秒前
鳗鱼纸飞机完成签到,获得积分10
5秒前
5秒前
5秒前
晓柳柳完成签到,获得积分10
5秒前
5秒前
Josh发布了新的文献求助10
6秒前
怡然雁凡完成签到,获得积分10
6秒前
哆啦顺利毕业完成签到 ,获得积分10
7秒前
小杭杭弟完成签到,获得积分10
7秒前
万能图书馆应助DASSEINSUUM采纳,获得10
7秒前
QQWQEQRQ完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
Eternity完成签到,获得积分10
9秒前
果蝇之母发布了新的文献求助10
9秒前
大个应助zzz采纳,获得10
9秒前
10秒前
香蕉觅云应助N2采纳,获得10
11秒前
甘蔗侠发布了新的文献求助10
12秒前
PWG发布了新的文献求助10
12秒前
orixero应助kkk采纳,获得10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779