A novel deep learning package for electrocardiography research

计算机科学 深度学习 人工智能 人工神经网络 机器学习 预处理器 可扩展性 信号处理 数据预处理 数据挖掘 数字信号处理 计算机硬件 数据库
作者
Hao Wen,Jingsu Kang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (11): 115006-115006 被引量:2
标识
DOI:10.1088/1361-6579/ac9451
摘要

Objective. In recent years, deep learning has blossomed in the field of electrocardiography (ECG) processing, outperforming traditional signal processing methods in a number of typical tasks; for example, classification, QRS detection and wave delineation. Although many neural architectures have been proposed in the literature, there is a lack of systematic studies and open-source libraries for ECG deep learning.Approach. In this paper, we propose a deep learning package, namedtorch_ecg, which assembles a large number of neural networks, from existing and novel literature, for various ECG processing tasks. The models are designed to be able to be automatically built from configuration files that contain a large set of configurable hyperparameters, making it convenient to scale the networks and perform neural architecture searching.torch_ecghas well-organized data processing modules, which contain utilities for data downloading, visualization, preprocessing and augmentation. To make the whole system more user-friendly, a series of helper modules are implemented, including model trainers, metric computation and loggers.Main results.torch_ecgestablishes a convenient and modular way for automatic building and flexible scaling of networks, as well as a neat and uniform way of organizing the preprocessing procedures and augmentation techniques for preparing the input data for the models. In addition,torch_ecgprovides benchmark studies using the latest databases, illustrating the principles and pipelines for solving ECG processing tasks and reproducing results from the literature.Significance.torch_ecgoffers the ECG research community a powerful tool for meeting the growing demand for the application of deep learning techniques. The code is available athttps://github.com/DeepPSP/torch_ecg.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
orixero应助欢呼凝冬采纳,获得10
3秒前
诗乃发布了新的文献求助10
3秒前
十一发布了新的文献求助10
3秒前
4秒前
qll完成签到,获得积分10
4秒前
傅荣轩完成签到,获得积分10
4秒前
6秒前
刻苦黎云完成签到,获得积分10
6秒前
6秒前
活力立诚完成签到,获得积分10
6秒前
7秒前
7秒前
NANI发布了新的文献求助10
8秒前
flippedaaa完成签到 ,获得积分10
9秒前
hailan发布了新的文献求助10
9秒前
朴实迎梅发布了新的文献求助10
9秒前
在水一方应助凡凡采纳,获得10
9秒前
忧心的碧完成签到,获得积分20
10秒前
10秒前
优雅的废完成签到,获得积分10
11秒前
FashionBoy应助optics1992采纳,获得10
12秒前
12秒前
等待的龙猫完成签到,获得积分10
12秒前
tanc完成签到,获得积分10
12秒前
12秒前
高高天抒完成签到,获得积分10
13秒前
英俊的铭应助zz采纳,获得10
13秒前
13秒前
ENG发布了新的文献求助10
13秒前
14秒前
Azure完成签到,获得积分10
14秒前
廿二发布了新的文献求助30
15秒前
量子星尘发布了新的文献求助10
15秒前
神勇晓旋完成签到,获得积分10
15秒前
eye完成签到,获得积分10
15秒前
十一完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027