A novel deep learning package for electrocardiography research

计算机科学 深度学习 人工智能 人工神经网络 机器学习 预处理器 可扩展性 信号处理 数据预处理 数据挖掘 数字信号处理 计算机硬件 数据库
作者
Hao Wen,Jingsu Kang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (11): 115006-115006 被引量:2
标识
DOI:10.1088/1361-6579/ac9451
摘要

Objective. In recent years, deep learning has blossomed in the field of electrocardiography (ECG) processing, outperforming traditional signal processing methods in a number of typical tasks; for example, classification, QRS detection and wave delineation. Although many neural architectures have been proposed in the literature, there is a lack of systematic studies and open-source libraries for ECG deep learning.Approach. In this paper, we propose a deep learning package, namedtorch_ecg, which assembles a large number of neural networks, from existing and novel literature, for various ECG processing tasks. The models are designed to be able to be automatically built from configuration files that contain a large set of configurable hyperparameters, making it convenient to scale the networks and perform neural architecture searching.torch_ecghas well-organized data processing modules, which contain utilities for data downloading, visualization, preprocessing and augmentation. To make the whole system more user-friendly, a series of helper modules are implemented, including model trainers, metric computation and loggers.Main results.torch_ecgestablishes a convenient and modular way for automatic building and flexible scaling of networks, as well as a neat and uniform way of organizing the preprocessing procedures and augmentation techniques for preparing the input data for the models. In addition,torch_ecgprovides benchmark studies using the latest databases, illustrating the principles and pipelines for solving ECG processing tasks and reproducing results from the literature.Significance.torch_ecgoffers the ECG research community a powerful tool for meeting the growing demand for the application of deep learning techniques. The code is available athttps://github.com/DeepPSP/torch_ecg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天向上发布了新的文献求助10
1秒前
6260完成签到,获得积分10
1秒前
pcr163应助linhanwenzhou采纳,获得50
2秒前
2秒前
酷酷元风完成签到,获得积分10
3秒前
4秒前
天才幸运鱼完成签到,获得积分10
4秒前
5秒前
5秒前
粥游天下完成签到,获得积分10
6秒前
jcc完成签到,获得积分10
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
lighthouse完成签到,获得积分10
7秒前
平凡中的限量版完成签到,获得积分10
7秒前
大伟完成签到,获得积分10
7秒前
long关注了科研通微信公众号
8秒前
懵懂的毛豆完成签到,获得积分10
8秒前
zzcherished发布了新的文献求助10
8秒前
zyq发布了新的文献求助10
8秒前
我是老大应助哦哦哦采纳,获得10
9秒前
YHY完成签到,获得积分10
9秒前
9秒前
天天呼的海角完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
jiangcai完成签到,获得积分10
16秒前
Cherry完成签到,获得积分10
18秒前
正能量的可可可完成签到,获得积分10
18秒前
tuo zhang发布了新的文献求助10
21秒前
草莓养乐多完成签到 ,获得积分10
21秒前
糊涂完成签到,获得积分10
21秒前
哦哦哦发布了新的文献求助10
21秒前
in完成签到 ,获得积分10
22秒前
pilot完成签到,获得积分10
24秒前
劣根完成签到,获得积分10
25秒前
Liang发布了新的文献求助20
25秒前
27秒前
28秒前
曾小莹完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029