Comparison of three machine learning models to predict suicidal ideation and depression among Chinese adolescents: A cross-sectional study

自杀意念 萧条(经济学) 心理学 人口 临床心理学 毒物控制 自杀未遂 自杀预防 医学 医疗急救 环境卫生 宏观经济学 经济
作者
Yating Huang,Chunyan Zhu,Yu Feng,Yifu Ji,Jingze Song,Kai Wang,Fengqiong Yu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:319: 221-228 被引量:22
标识
DOI:10.1016/j.jad.2022.08.123
摘要

Machine learning (ML) algorithms based on various clinicodemographic, psychometric, and biographic factors have been used to predict depression, suicidal ideation, and suicide attempt in adolescents, but there is still a need for more accurate and efficient models for screening the general adolescent population. In this study, we compared various ML methods to identify a model that most accurately predicts suicidal ideation and level of depression in a large cohort of school-aged adolescents.Ten psychological scale scores and 20 sociodemographic parameters were collected from 10,243 Chinese adolescents in the first or second year of middle school and high school. These variables were then included in a random forest (RF) model, support vector machine (SVM) model, and decision tree model for factor screening, dichotomous prediction of suicidal ideation (yes/no), and trichotomous prediction of depression (no depression, mild-moderate depression, or major depression).The RF model demonstrated greater accuracy for predicting suicidal ideation (mean accuracy (ACC) = 87.3 %, SD = 3.2 %, area under curve (AUC) = 92.4 %) and depressive status (ACC = 84.0 %, SD = 2.8 %, AUC = 90.1 %) than SVM and decision tree models. We have also used the RF model to predict adolescents with both depression and suicidal ideation with satisfactory results. Significant differences were found in several sociodemographic parameters and scale scores among classification groups and differences in six factors between sexes.This RF model may prove valuable for predicting suicidal ideation, depression, and non-suicidal self-injury among the general population of Chinese adolescents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助烂漫念文采纳,获得10
刚刚
susu完成签到,获得积分10
1秒前
1秒前
1秒前
Lz555完成签到 ,获得积分10
2秒前
FashionBoy应助傲娇梦旋采纳,获得10
4秒前
细心的柏柳应助CY采纳,获得10
4秒前
5秒前
似水流年发布了新的文献求助10
5秒前
欢喜的幼荷给香菜大姐的求助进行了留言
7秒前
7秒前
8秒前
晨昏完成签到,获得积分10
9秒前
小木易完成签到,获得积分10
10秒前
上官若男应助miksa采纳,获得10
10秒前
bkagyin应助若水采纳,获得10
11秒前
水穷云起完成签到,获得积分10
11秒前
12秒前
mengya发布了新的文献求助30
12秒前
heavenhorse完成签到,获得积分10
12秒前
枫竹发布了新的文献求助10
12秒前
13秒前
13秒前
zyy完成签到,获得积分10
13秒前
丘比特应助老阳采纳,获得10
14秒前
14秒前
Cat应助依旧采纳,获得10
15秒前
16秒前
ljh完成签到 ,获得积分10
16秒前
KK完成签到,获得积分10
17秒前
科研通AI5应助晨曦采纳,获得10
17秒前
烂漫念文发布了新的文献求助10
18秒前
叙温雨发布了新的文献求助10
21秒前
文静冬瓜完成签到,获得积分20
21秒前
烂漫念文完成签到,获得积分10
22秒前
彩色的紫丝完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882