Build surface study of single-layer raster scanning in selective laser melting: Surface roughness prediction using deep learning

选择性激光熔化 表面粗糙度 材料科学 表面光洁度 光栅图形 激光功率缩放 光栅扫描 激光扫描 光学 机械工程 复合材料 计算机科学 激光器 人工智能 工程类 物理 微观结构
作者
Behzad Fotovvati,Kevin Chou
出处
期刊:Manufacturing letters [Elsevier BV]
卷期号:33: 701-711 被引量:9
标识
DOI:10.1016/j.mfglet.2022.07.088
摘要

Selective laser melting (SLM) is a widely used powder-bed fusion additive manufacturing (AM) process for the fabrication of parts from metal powders in a variety of industries such as aerospace, medical, automotive, etc. Despite significant improvements in the design flexibility and mechanical performance, the poor predictability in surface finish, and yet oftentimes with large variability, remains a major challenge in the SLM use. Numerous factors affect the surface roughness of SLM-manufactured parts, which have been reported in the literature, but mostly for bulk samples composed of several layers. In this work, single-layer raster scanning of Ti6Al4V samples are designed and fabricated. The influence of the four most dominant SLM process parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness on sample surface roughness is thoroughly investigated using a fractional factorial design. Surface roughness data, acquired by white-light interferometry, from 216 data sets are then used to train a machine learning model with the back-propagation method and predict the surface roughness based on the input process parameters. The results show that the laser power is the most significant parameter in determining the top surface roughness of samples. Interestingly, although the investigated samples are single layer raster scanning areas on a solid SLM-built sample with the same parameter set, the layer thickness has a contribution of 10% to 15% in the variations of the surface roughness of the single layers. Furthermore, the machine learning algorithm achieves reasonable predictability, showing a coefficient of determination of 98.8% for a separate 32 testing data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美寻桃发布了新的文献求助10
刚刚
wry关闭了wry文献求助
1秒前
1秒前
hhhhhhhhhh完成签到 ,获得积分10
1秒前
冬云完成签到,获得积分10
1秒前
2秒前
2秒前
lcm完成签到,获得积分10
3秒前
dove发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助酷酷语兰采纳,获得10
4秒前
zhaoa发布了新的文献求助10
4秒前
Ivychao发布了新的文献求助10
5秒前
冬云发布了新的文献求助10
7秒前
VDC发布了新的文献求助10
7秒前
犹豫酸奶完成签到,获得积分10
8秒前
小松鼠发布了新的文献求助10
8秒前
leekle完成签到,获得积分10
8秒前
9秒前
MZCCaiajie发布了新的文献求助10
9秒前
阿韦发布了新的文献求助10
12秒前
zhaoa完成签到,获得积分20
12秒前
tsntn完成签到,获得积分10
13秒前
keke发布了新的文献求助20
13秒前
Ivychao完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
万能图书馆应助zhaoa采纳,获得10
16秒前
17秒前
东方天奇发布了新的文献求助10
17秒前
17秒前
韩soso完成签到,获得积分10
19秒前
梁婷婷发布了新的文献求助10
19秒前
CyrusSo524完成签到,获得积分10
20秒前
yar应助WangSir采纳,获得10
21秒前
传统的卿发布了新的文献求助10
21秒前
领导范儿应助研友_GZbzoZ采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765