Design principles of 3D epigenetic memory systems

常染色质 表观遗传学 异染色质 染色质 组蛋白 生物 遗传学 进化生物学 计算生物学 DNA 基因
作者
Jeremy A. Owen,Dino Osmanović,Leonid A. Mirny
标识
DOI:10.1101/2022.09.24.509332
摘要

Abstract The epigenetic state of a cell is associated with patterns of chemical modifications of histones (“marks”) across the genome, with different marks typical of active (euchromatic) and inactive (heterochromatic) genomic regions. These mark patterns can be stable over many cell generations—a form of epigenetic memory—despite their constant erosion due to replication and other processes. Enzymes that place histone marks are often stimulated by the same marks, as if “spreading” marks between neighboring histones. But this positive feedback may not be sufficient for stable memory, raising the question of what is. In this work, we show how 3D genome organization—in particular, the compartmental segregation of euchromatin and heterochromatin— could serve to stabilize an epigenetic memory, as long as (1) there is a large density difference between the compartments, (2) the modifying enzymes can spread marks in 3D, and (3) the enzymes are limited in abundance relative to their histone substrates. We introduce a biophysical model stylizing chromatin and its dynamics through the cell cycle, in which enzymes spread self-attracting marks on a polymer. We find that marks localize sharply and stably to the denser compartment, but over several cell generations, the model generically exhibits uncontrolled spread or global loss of marks. Strikingly, imposing limitation of the modifying enzymes—a plausible but oft-neglected element—totally changes this picture, yielding an epigenetic memory system, stable for hundreds of cell generations. Our model predicts a rich phenomenology to compare to experiments, and reveals basic design principles of putative epigenetic memory systems relying on compartmentalized 3D genome structure for their function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦凝冬发布了新的文献求助10
1秒前
猪心虾仁关注了科研通微信公众号
1秒前
小二郎应助Qu_Yun采纳,获得30
3秒前
HZS发布了新的文献求助10
3秒前
salad发布了新的文献求助10
4秒前
4秒前
维尼完成签到,获得积分10
4秒前
快乐迎心发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
情怀应助无辜叫兽采纳,获得10
4秒前
小猴子应助Amosummer采纳,获得10
5秒前
7秒前
科研通AI6应助Sugarm采纳,获得10
7秒前
追梦小帅完成签到,获得积分10
7秒前
8秒前
8秒前
001发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
9秒前
酷波er应助大气早晨采纳,获得10
9秒前
yantianliang发布了新的文献求助10
9秒前
星星又累发布了新的文献求助20
9秒前
李爱国应助wwl01034采纳,获得10
10秒前
wking发布了新的文献求助10
10秒前
10秒前
11秒前
糖淘淘发布了新的文献求助10
11秒前
ahq完成签到,获得积分10
11秒前
minminmin发布了新的文献求助10
11秒前
11秒前
wenbinvan完成签到,获得积分0
11秒前
11秒前
12秒前
洞两发布了新的文献求助10
13秒前
Yoooo发布了新的文献求助10
13秒前
幸运在我发布了新的文献求助20
13秒前
哈哈完成签到,获得积分10
13秒前
TT完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531417
求助须知:如何正确求助?哪些是违规求助? 4620221
关于积分的说明 14572354
捐赠科研通 4559789
什么是DOI,文献DOI怎么找? 2498599
邀请新用户注册赠送积分活动 1478568
关于科研通互助平台的介绍 1449979