Design principles of 3D epigenetic memory systems

常染色质 表观遗传学 异染色质 染色质 组蛋白 生物 遗传学 进化生物学 计算生物学 DNA 基因
作者
Jeremy A. Owen,Dino Osmanović,Leonid A. Mirny
标识
DOI:10.1101/2022.09.24.509332
摘要

Abstract The epigenetic state of a cell is associated with patterns of chemical modifications of histones (“marks”) across the genome, with different marks typical of active (euchromatic) and inactive (heterochromatic) genomic regions. These mark patterns can be stable over many cell generations—a form of epigenetic memory—despite their constant erosion due to replication and other processes. Enzymes that place histone marks are often stimulated by the same marks, as if “spreading” marks between neighboring histones. But this positive feedback may not be sufficient for stable memory, raising the question of what is. In this work, we show how 3D genome organization—in particular, the compartmental segregation of euchromatin and heterochromatin— could serve to stabilize an epigenetic memory, as long as (1) there is a large density difference between the compartments, (2) the modifying enzymes can spread marks in 3D, and (3) the enzymes are limited in abundance relative to their histone substrates. We introduce a biophysical model stylizing chromatin and its dynamics through the cell cycle, in which enzymes spread self-attracting marks on a polymer. We find that marks localize sharply and stably to the denser compartment, but over several cell generations, the model generically exhibits uncontrolled spread or global loss of marks. Strikingly, imposing limitation of the modifying enzymes—a plausible but oft-neglected element—totally changes this picture, yielding an epigenetic memory system, stable for hundreds of cell generations. Our model predicts a rich phenomenology to compare to experiments, and reveals basic design principles of putative epigenetic memory systems relying on compartmentalized 3D genome structure for their function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liky完成签到 ,获得积分10
1秒前
jiangfei完成签到,获得积分10
1秒前
1秒前
winwin完成签到,获得积分10
1秒前
情怀应助小柯采纳,获得20
2秒前
2秒前
听风挽完成签到 ,获得积分10
3秒前
YuGe发布了新的文献求助10
3秒前
3秒前
縤雨完成签到 ,获得积分10
3秒前
4秒前
安静的安寒完成签到,获得积分10
5秒前
ExtroGod完成签到,获得积分10
5秒前
Vincent完成签到,获得积分10
6秒前
九城完成签到,获得积分10
6秒前
相机大喊大叫完成签到,获得积分10
6秒前
7秒前
Cloud完成签到,获得积分10
7秒前
尾巴完成签到 ,获得积分10
7秒前
小松发布了新的文献求助10
7秒前
汐鹿应助成就的冰绿采纳,获得10
7秒前
王思聪发布了新的文献求助10
7秒前
8秒前
8秒前
dada完成签到,获得积分20
8秒前
邪恶青年完成签到,获得积分10
9秒前
元谷雪完成签到,获得积分10
9秒前
螺旋飞天放屁完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
北风完成签到,获得积分10
11秒前
筱xiao完成签到,获得积分10
11秒前
淡然的奎完成签到,获得积分10
11秒前
思源应助醉熏的夏兰采纳,获得10
12秒前
wanglu完成签到,获得积分10
12秒前
12秒前
cfy完成签到,获得积分10
12秒前
犯困嫌疑人完成签到,获得积分10
12秒前
可燃冰完成签到,获得积分10
12秒前
CodeCraft应助ysta采纳,获得10
12秒前
GGbond完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658748
求助须知:如何正确求助?哪些是违规求助? 4824231
关于积分的说明 15082960
捐赠科研通 4817306
什么是DOI,文献DOI怎么找? 2578116
邀请新用户注册赠送积分活动 1532801
关于科研通互助平台的介绍 1491595