New morphological parameter for intracranial aneurysms and rupture risk prediction based on artificial neural networks

医学 转动惯量 动脉瘤 接收机工作特性 放射科 内科学 物理 量子力学
作者
Hyeondong Yang,Kwang‐Chun Cho,Jung‐Jae Kim,Yong Bae Kim,Je Hoon Oh
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:15 (e2): e209-e215 被引量:6
标识
DOI:10.1136/jnis-2022-019201
摘要

Numerous studies have evaluated the rupture risk of intracranial aneurysms using morphological parameters because of their good predictive capacity. However, the limitation of current morphological parameters is that they do not always allow evaluation of irregularities of intracranial aneurysms. The purpose of this study is to propose a new morphological parameter that can quantitatively describe irregularities of intracranial aneurysms and to evaluate its performance regarding rupture risk prediction.In a retrospective study, conventional morphological parameters (aspect ratio, bottleneck ratio, height-to-width ratio, volume to ostium ratio, and size ratio) and a newly proposed morphological parameter (mass moment of inertia) were calculated for 125 intracranial aneurysms (80 unruptured and 45 ruptured aneurysms). Additionally, hemodynamic parameters (wall shear stress and strain) were calculated using computational fluid dynamics and fluid-structure interaction. Artificial neural networks trained with each parameter were used for rupture risk prediction.All components of the mass moment of inertia (Ixx, Iyy, and Izz) were significantly higher in ruptured cases than in unruptured cases (p values for Ixx, Iyy, and Izz were 0.032, 0.047, and 0.039, respectively). When the conventional morphological and hemodynamic parameters as well as the mass moment of inertia were considered together, the highest performance for rupture risk prediction was obtained (sensitivity 96.3%; specificity 85.7%; area under the receiver operating characteristic curve 0.921).The mass moment of inertia would be a useful parameter for evaluating aneurysm irregularity and hence its risk of rupture. The new approach described here may help clinicians to predict the risk of aneurysm rupture more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
恒河鲤完成签到,获得积分10
刚刚
刚刚
Qiuyajing完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
大鹅完成签到,获得积分10
2秒前
张姐发布了新的文献求助10
2秒前
3秒前
3秒前
Rheane发布了新的文献求助10
3秒前
斯文谷秋发布了新的文献求助10
3秒前
Aslan2024发布了新的文献求助100
3秒前
4秒前
4秒前
称心不尤发布了新的文献求助10
4秒前
5秒前
热心市民小红花应助万松采纳,获得10
5秒前
无花果应助黄阿杰采纳,获得10
5秒前
Qiuyajing发布了新的文献求助10
5秒前
北辰发布了新的文献求助10
6秒前
酸菜萌萌鱼关注了科研通微信公众号
7秒前
毛毛关注了科研通微信公众号
7秒前
LGB发布了新的文献求助10
7秒前
科研通AI2S应助张姐采纳,获得10
7秒前
8秒前
小趴蔡完成签到,获得积分10
10秒前
FashionBoy应助Perrylin718采纳,获得10
11秒前
懒羊羊发布了新的文献求助10
11秒前
佳佳发布了新的文献求助20
11秒前
tea发布了新的文献求助10
12秒前
阿迦发布了新的文献求助10
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
han应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
linna发布了新的文献求助10
13秒前
外向跳跳糖完成签到 ,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3105631
求助须知:如何正确求助?哪些是违规求助? 2756681
关于积分的说明 7641226
捐赠科研通 2410796
什么是DOI,文献DOI怎么找? 1279097
科研通“疑难数据库(出版商)”最低求助积分说明 617641
版权声明 599262