Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling

热导率 材料科学 热电效应 热电材料 热电冷却 各向异性 声子 声子散射 凝聚态物理 光电子学 光学 复合材料 热力学 物理
作者
Zongqing Ren,Jaeho Lee
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:29 (4): 045404-045404 被引量:20
标识
DOI:10.1088/1361-6528/aa9f07
摘要

Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
南风知我意完成签到,获得积分20
3秒前
段一帆发布了新的文献求助30
5秒前
wangqinlei完成签到 ,获得积分10
5秒前
fenghp发布了新的文献求助10
6秒前
王馨雨发布了新的文献求助10
6秒前
8秒前
CipherSage应助ccalvintan采纳,获得10
9秒前
9秒前
雪天的阳完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
烟花应助ren采纳,获得10
14秒前
讨厌科研发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
苏卿应助科研通管家采纳,获得30
16秒前
fd163c应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
17秒前
CAOHOU应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得30
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
17秒前
殷勤的紫槐完成签到,获得积分10
17秒前
风轻青柠发布了新的文献求助10
18秒前
18秒前
机智冬灵完成签到,获得积分10
19秒前
20秒前
为小嗳打伞完成签到 ,获得积分10
22秒前
小木安华发布了新的文献求助10
22秒前
体贴的之卉完成签到,获得积分20
24秒前
大侠完成签到 ,获得积分10
24秒前
spy777应助机智冬灵采纳,获得20
25秒前
晨曦发布了新的文献求助10
25秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174