已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling

热导率 材料科学 热电效应 热电材料 热电冷却 各向异性 声子 声子散射 凝聚态物理 光电子学 光学 复合材料 热力学 物理
作者
Zongqing Ren,Jaeho Lee
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:29 (4): 045404-045404 被引量:20
标识
DOI:10.1088/1361-6528/aa9f07
摘要

Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮醉波完成签到 ,获得积分10
刚刚
章鱼哥想毕业完成签到 ,获得积分10
1秒前
月儿完成签到 ,获得积分10
3秒前
Karen331完成签到,获得积分10
3秒前
butaishao完成签到,获得积分10
4秒前
看不了一点文献应助lzm采纳,获得20
4秒前
橙子应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
耶啵完成签到 ,获得积分10
5秒前
9秒前
10秒前
朱朱朱完成签到,获得积分10
10秒前
yuan发布了新的文献求助10
12秒前
光之战士完成签到 ,获得积分10
13秒前
mw发布了新的文献求助10
15秒前
111完成签到 ,获得积分10
18秒前
25秒前
25秒前
28秒前
Amy完成签到 ,获得积分10
28秒前
Jing完成签到 ,获得积分20
31秒前
Ava应助HuiHui采纳,获得10
31秒前
称心的思卉完成签到,获得积分10
33秒前
wanci应助tangyuanliang采纳,获得10
34秒前
35秒前
HBY完成签到,获得积分10
37秒前
Steven发布了新的文献求助10
40秒前
41秒前
凯文完成签到 ,获得积分10
44秒前
44秒前
凶狠的白竹完成签到,获得积分10
45秒前
瘦瘦的迎南完成签到 ,获得积分10
45秒前
46秒前
SUE发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989868
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255752
捐赠科研通 3270793
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882215
科研通“疑难数据库(出版商)”最低求助积分说明 809208