Minimum Spanning Forest With Embedded Edge Inconsistency Measurement Model for Guided Depth Map Enhancement

马尔可夫随机场 人工智能 深度图 像素 数学 计算机视觉 最小生成树 计算机科学 算法 模式识别(心理学) 图像分割 图像(数学)
作者
Yifan Zuo,Qiang Wu,Jian Zhang,Ping An
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:27 (8): 4145-4159 被引量:23
标识
DOI:10.1109/tip.2018.2828335
摘要

Guided depth map enhancement based on Markov Random Field (MRF) normally assumes edge consistency between the color image and the corresponding depth map. Under this assumption, the low-quality depth edges can be refined according to the guidance from the high-quality color image. However, such consistency is not always true, which leads to texture-copying artifacts and blurring depth edges. In addition, the previous MRF-based models always calculate the guidance affinities in the regularization term via a non-structural scheme which ignores the local structure on the depth map. In this paper, a novel MRF-based method is proposed. It computes these affinities via the distance between pixels in a space consisting of the Minimum Spanning Trees (Forest) to better preserve depth edges. Furthermore, inside each Minimum Spanning Tree, the weights of edges are computed based on explicit edge inconsistency measurement model, which significantly mitigates texture-copying artifacts. To further tolerate the effects caused by noise and better preserve depth edges, a bandwidth adaption scheme is proposed. Our method is evaluated for depth map super-resolution and depth map completion problems on synthetic and real datasets including Middlebury, ToF-Mark and NYU. A comprehensive comparison against 16 state-of-the-art methods is carried out. Both qualitative and quantitative evaluation present the improved performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
厚礼蟹完成签到,获得积分10
刚刚
务实擎汉完成签到,获得积分10
1秒前
顺利毕业完成签到,获得积分10
1秒前
大概是你才可以完成签到,获得积分10
1秒前
NVSK完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
个性宝川发布了新的文献求助10
3秒前
摸鱼真君完成签到,获得积分10
3秒前
www发布了新的文献求助10
4秒前
顾矜应助w1x2123采纳,获得10
4秒前
4秒前
光亮白山发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
顺利毕业发布了新的文献求助10
5秒前
我是老大应助小小小采纳,获得10
5秒前
小王发布了新的文献求助100
5秒前
ABC2023发布了新的文献求助10
6秒前
wintew发布了新的文献求助10
6秒前
紫气东来发布了新的文献求助10
8秒前
zorow完成签到,获得积分10
8秒前
Vanessa完成签到 ,获得积分10
8秒前
lip给景不评的求助进行了留言
8秒前
9秒前
hmy完成签到,获得积分10
9秒前
9秒前
科研通AI6应助fish采纳,获得10
9秒前
SN完成签到,获得积分10
10秒前
小王完成签到,获得积分10
10秒前
10秒前
11秒前
小二郎应助Cyril采纳,获得10
11秒前
wsx发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
科研通AI2S应助熊熊冲冲冲采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721