数学
斯蒂弗尔流形
数学优化
梯度下降
正交性
欧几里得空间
坐标下降
迭代函数
歧管(流体力学)
还原(数学)
静止点
降维
投影(关系代数)
功能(生物学)
应用数学
算法
计算机科学
组合数学
纯数学
数学分析
几何学
人工智能
工程类
人工神经网络
机器学习
生物
机械工程
进化生物学
作者
Bin Gao,Xin Liu,Xiaojun Chen,Ya-xiang Yuan
出处
期刊:Siam Journal on Optimization
[Society for Industrial and Applied Mathematics]
日期:2018-01-01
卷期号:28 (1): 302-332
被引量:67
摘要
In this paper, we consider a class of optimization problems with orthogonality constraints, the feasible region of which is called the Stiefel manifold. Our new framework combines a function value reduction step with a correction step. Different from the existing approaches, the function value reduction step of our algorithmic framework searches along the standard Euclidean descent directions instead of the vectors in the tangent space of the Stiefel manifold, and the correction step further reduces the function value and guarantees a symmetric dual variable at the same time. We construct two types of algorithms based on this new framework. The first type is based on gradient reduction including the gradient reflection (GR) and the gradient projection (GP) algorithms. The other one adopts a columnwise block coordinate descent (CBCD) scheme with a novel idea for solving the corresponding CBCD subproblem inexactly. We prove that both GR/GP with a fixed step size and CBCD belong to our algorithmic framework, and any clustering point of the iterates generated by the proposed framework is a first-order stationary point. Preliminary experiments illustrate that our new framework is of great potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI