Multiscale Geographically Weighted Regression (MGWR)

比例(比率) 计算机科学 地理加权回归模型 地理 数据挖掘 空间分析 空间生态学 空间异质性 统计 数学 地图学 生态学 生物
作者
A. Stewart Fotheringham,Wenbai Yang,Wei Kang
出处
期刊:Annals of the American Association of Geographers [Taylor & Francis]
卷期号:107 (6): 1247-1265 被引量:944
标识
DOI:10.1080/24694452.2017.1352480
摘要

Scale is a fundamental geographic concept, and a substantial literature exists discussing the various roles that scale plays in different geographical contexts. Relatively little work exists, though, that provides a means of measuring the geographic scale over which different processes operate. Here we demonstrate how geographically weighted regression (GWR) can be adapted to provide such measures. GWR explores the potential spatial nonstationarity of relationships and provides a measure of the spatial scale at which processes operate through the determination of an optimal bandwidth. Classical GWR assumes that all of the processes being modeled operate at the same spatial scale, however. The work here relaxes this assumption by allowing different processes to operate at different spatial scales. This is achieved by deriving an optimal bandwidth vector in which each element indicates the spatial scale at which a particular process takes place. This new version of GWR is termed multiscale geographically weighted regression (MGWR), which is similar in intent to Bayesian nonseparable spatially varying coefficients (SVC) models, although potentially providing a more flexible and scalable framework in which to examine multiscale processes. Model calibration and bandwidth vector selection in MGWR are conducted using a back-fitting algorithm. We compare the performance of GWR and MGWR by applying both frameworks to two simulated data sets with known properties and to an empirical data set on Irish famine. Results indicate that MGWR not only is superior in replicating parameter surfaces with different levels of spatial heterogeneity but provides valuable information on the scale at which different processes operate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joanna发布了新的文献求助10
1秒前
lz完成签到 ,获得积分10
1秒前
3秒前
orixero应助fgjhg采纳,获得30
4秒前
5秒前
5秒前
小马甲应助璨澄采纳,获得10
5秒前
cass完成签到,获得积分10
6秒前
7秒前
老实白梅发布了新的文献求助30
7秒前
Joanna完成签到,获得积分10
8秒前
10秒前
10秒前
科研狗完成签到 ,获得积分0
11秒前
彭彭完成签到,获得积分20
11秒前
苏打发布了新的文献求助10
12秒前
saisai发布了新的文献求助20
13秒前
小蘑菇应助潘潘采纳,获得10
14秒前
14秒前
orixero应助鲜艳的皮皮虾采纳,获得10
15秒前
Benzhdw发布了新的文献求助10
16秒前
17秒前
18秒前
吉坡发布了新的文献求助10
18秒前
21秒前
默默碧空发布了新的文献求助10
22秒前
23秒前
Vo发布了新的文献求助10
23秒前
wanci应助科研通管家采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
26秒前
华仔应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得30
26秒前
逸之狐应助科研通管家采纳,获得20
26秒前
KY Mr.WANG完成签到,获得积分10
26秒前
核桃应助科研通管家采纳,获得10
27秒前
柯一一应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382