Multiscale Geographically Weighted Regression (MGWR)

比例(比率) 计算机科学 地理加权回归模型 地理 数据挖掘 空间分析 空间生态学 空间异质性 统计 数学 地图学 生态学 生物
作者
A. Stewart Fotheringham,Wenbai Yang,Wei Kang
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:107 (6): 1247-1265 被引量:1202
标识
DOI:10.1080/24694452.2017.1352480
摘要

Scale is a fundamental geographic concept, and a substantial literature exists discussing the various roles that scale plays in different geographical contexts. Relatively little work exists, though, that provides a means of measuring the geographic scale over which different processes operate. Here we demonstrate how geographically weighted regression (GWR) can be adapted to provide such measures. GWR explores the potential spatial nonstationarity of relationships and provides a measure of the spatial scale at which processes operate through the determination of an optimal bandwidth. Classical GWR assumes that all of the processes being modeled operate at the same spatial scale, however. The work here relaxes this assumption by allowing different processes to operate at different spatial scales. This is achieved by deriving an optimal bandwidth vector in which each element indicates the spatial scale at which a particular process takes place. This new version of GWR is termed multiscale geographically weighted regression (MGWR), which is similar in intent to Bayesian nonseparable spatially varying coefficients (SVC) models, although potentially providing a more flexible and scalable framework in which to examine multiscale processes. Model calibration and bandwidth vector selection in MGWR are conducted using a back-fitting algorithm. We compare the performance of GWR and MGWR by applying both frameworks to two simulated data sets with known properties and to an empirical data set on Irish famine. Results indicate that MGWR not only is superior in replicating parameter surfaces with different levels of spatial heterogeneity but provides valuable information on the scale at which different processes operate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
月流瓦完成签到,获得积分10
1秒前
秋山伊夫完成签到,获得积分10
1秒前
博ge发布了新的文献求助10
1秒前
Bab完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
yuan完成签到,获得积分10
3秒前
排骨炖豆角完成签到 ,获得积分10
3秒前
研友_Z1eelZ发布了新的文献求助10
3秒前
maer完成签到,获得积分20
3秒前
chenxing发布了新的文献求助10
3秒前
计划逃跑发布了新的文献求助10
4秒前
科目三应助Panda_Zhou采纳,获得10
4秒前
ldq完成签到,获得积分10
5秒前
zxvcbnm完成签到,获得积分10
5秒前
5秒前
胡一刀不归完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
5秒前
Yi发布了新的文献求助10
6秒前
xixixi完成签到,获得积分10
6秒前
汉堡包应助zjy147采纳,获得10
7秒前
寒冷的初雪完成签到,获得积分10
7秒前
碧蓝曼安完成签到,获得积分10
7秒前
yqwang完成签到,获得积分10
7秒前
towanda完成签到,获得积分10
7秒前
7秒前
Mark应助Shantx采纳,获得20
7秒前
量子星尘发布了新的文献求助10
8秒前
orixero应助ldq采纳,获得50
8秒前
8秒前
8秒前
9秒前
笨笨秋白发布了新的文献求助10
10秒前
11秒前
领导范儿应助虚幻的大山采纳,获得10
12秒前
cheng发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773975
求助须知:如何正确求助?哪些是违规求助? 5615282
关于积分的说明 15433908
捐赠科研通 4906488
什么是DOI,文献DOI怎么找? 2640250
邀请新用户注册赠送积分活动 1588076
关于科研通互助平台的介绍 1543074