已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiscale Geographically Weighted Regression (MGWR)

比例(比率) 计算机科学 地理加权回归模型 地理 数据挖掘 空间分析 空间生态学 空间异质性 统计 数学 地图学 生态学 生物
作者
A. Stewart Fotheringham,Wenbai Yang,Wei Kang
出处
期刊:Annals of the American Association of Geographers [Taylor & Francis]
卷期号:107 (6): 1247-1265 被引量:1110
标识
DOI:10.1080/24694452.2017.1352480
摘要

Scale is a fundamental geographic concept, and a substantial literature exists discussing the various roles that scale plays in different geographical contexts. Relatively little work exists, though, that provides a means of measuring the geographic scale over which different processes operate. Here we demonstrate how geographically weighted regression (GWR) can be adapted to provide such measures. GWR explores the potential spatial nonstationarity of relationships and provides a measure of the spatial scale at which processes operate through the determination of an optimal bandwidth. Classical GWR assumes that all of the processes being modeled operate at the same spatial scale, however. The work here relaxes this assumption by allowing different processes to operate at different spatial scales. This is achieved by deriving an optimal bandwidth vector in which each element indicates the spatial scale at which a particular process takes place. This new version of GWR is termed multiscale geographically weighted regression (MGWR), which is similar in intent to Bayesian nonseparable spatially varying coefficients (SVC) models, although potentially providing a more flexible and scalable framework in which to examine multiscale processes. Model calibration and bandwidth vector selection in MGWR are conducted using a back-fitting algorithm. We compare the performance of GWR and MGWR by applying both frameworks to two simulated data sets with known properties and to an empirical data set on Irish famine. Results indicate that MGWR not only is superior in replicating parameter surfaces with different levels of spatial heterogeneity but provides valuable information on the scale at which different processes operate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级冰巧关注了科研通微信公众号
1秒前
Cosmosurfer完成签到,获得积分10
2秒前
Lidocaine发布了新的文献求助10
2秒前
tzz发布了新的文献求助10
2秒前
远山发布了新的文献求助10
6秒前
RR发布了新的文献求助10
9秒前
whqpeter完成签到,获得积分10
9秒前
xiaoyuyuyu完成签到 ,获得积分10
9秒前
新定义发布了新的文献求助10
11秒前
乐乐应助燕海雪采纳,获得10
11秒前
kei发布了新的文献求助10
11秒前
zzmyyds完成签到,获得积分10
13秒前
守墓人发布了新的文献求助10
14秒前
kesler驳回了烟花应助
19秒前
何柯完成签到,获得积分10
22秒前
23秒前
芬芬完成签到,获得积分10
23秒前
25秒前
Jackylee完成签到,获得积分10
26秒前
28秒前
贱小贱完成签到,获得积分10
28秒前
龙龙不卷发布了新的文献求助10
29秒前
新定义完成签到,获得积分10
29秒前
雨柏完成签到 ,获得积分10
37秒前
搜集达人应助龙龙不卷采纳,获得10
38秒前
兜兜完成签到 ,获得积分10
38秒前
46秒前
47秒前
47秒前
47秒前
Splaink发布了新的文献求助10
49秒前
51秒前
dsahd2完成签到,获得积分10
56秒前
58秒前
1分钟前
燕海雪发布了新的文献求助10
1分钟前
小时了了完成签到,获得积分10
1分钟前
1分钟前
ax完成签到,获得积分10
1分钟前
ax发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253415
求助须知:如何正确求助?哪些是违规求助? 4416784
关于积分的说明 13750464
捐赠科研通 4289176
什么是DOI,文献DOI怎么找? 2353280
邀请新用户注册赠送积分活动 1349992
关于科研通互助平台的介绍 1309831