髓系白血病
动力学(音乐)
非线性系统
偏微分方程
理论(学习稳定性)
人口
舱室(船)
数学
应用数学
统计物理学
计算机科学
物理
癌症研究
医学
数学分析
海洋学
地质学
环境卫生
量子力学
机器学习
声学
作者
José Luis Avila Alonso,Catherine Bonnet,Jean Clairambault,Hitay Özbay,Silviu‐Iulian Niculescu,Faten Merhi,Annabelle Ballesta,Ruoping Tang,Jean‐Pierre Marie
出处
期刊:Advances in delays and dynamics
日期:2014-01-01
卷期号:: 315-328
被引量:12
标识
DOI:10.1007/978-3-319-01695-5_23
摘要
A new mathematical model of the cell dynamics in Acute Myeloid Leukemia (AML) is considered which takes into account the four different phases of the proliferating compartment. The dynamics of the cell populations are governed by transport partial differential equations structured in age and by using the method of characteristics, we obtain that the dynamical system of equation can be reduced to two coupled nonlinear equations with four internal sub-systems involving distributed delays. Equilibrium and local stability analysis of this model are performed and several simulations illustrate the results.
科研通智能强力驱动
Strongly Powered by AbleSci AI