PrivBayes

差别隐私 计算机科学 元组 维数之咒 噪音(视频) 构造(python库) 数据挖掘 光学(聚焦) 边际分布 理论计算机科学 算法
作者
Jun Zhang,Graham Cormode,Cecilia M. Procopiuc,Divesh Srivastava,Xiaokui Xiao
出处
期刊:ACM Transactions on Database Systems [Association for Computing Machinery]
卷期号:42 (4): 1-41
标识
DOI:10.1145/3134428
摘要

Privacy-preserving data publishing is an important problem that has been the focus of extensive study. The state-of-the-art solution for this problem is differential privacy, which offers a strong degree of privacy protection without making restrictive assumptions about the adversary. Existing techniques using differential privacy, however, cannot effectively handle the publication of high-dimensional data. In particular, when the input dataset contains a large number of attributes, existing methods require injecting a prohibitive amount of noise compared to the signal in the data, which renders the published data next to useless. To address the deficiency of the existing methods, this paper presents P riv B ayes , a differentially private method for releasing high-dimensional data. Given a dataset D , P riv B ayes first constructs a Bayesian network N , which (i) provides a succinct model of the correlations among the attributes in D and (ii) allows us to approximate the distribution of data in D using a set P of low-dimensional marginals of D . After that, P riv B ayes injects noise into each marginal in P to ensure differential privacy and then uses the noisy marginals and the Bayesian network to construct an approximation of the data distribution in D . Finally, P riv B ayes samples tuples from the approximate distribution to construct a synthetic dataset, and then releases the synthetic data. Intuitively, P riv B ayes circumvents the curse of dimensionality, as it injects noise into the low-dimensional marginals in P instead of the high-dimensional dataset D . Private construction of Bayesian networks turns out to be significantly challenging, and we introduce a novel approach that uses a surrogate function for mutual information to build the model more accurately. We experimentally evaluate P riv B ayes on real data and demonstrate that it significantly outperforms existing solutions in terms of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪琪琪完成签到,获得积分10
1秒前
yangkeke发布了新的文献求助10
1秒前
尉迟念波发布了新的文献求助10
3秒前
xiaoxx发布了新的文献求助10
4秒前
寒冷的雨发布了新的文献求助10
4秒前
嘉人完成签到 ,获得积分10
4秒前
孤梦落雨发布了新的文献求助10
4秒前
fwm发布了新的文献求助10
4秒前
Jasper应助psj采纳,获得10
5秒前
8秒前
风筝完成签到 ,获得积分10
8秒前
洋洋洋完成签到,获得积分10
9秒前
9秒前
9秒前
孤独翠柏完成签到,获得积分10
9秒前
尉迟念波完成签到,获得积分20
10秒前
10秒前
zhuanghj5完成签到 ,获得积分20
11秒前
Alina1874完成签到,获得积分10
11秒前
华仔应助Xhh采纳,获得10
12秒前
zhuanghj5发布了新的文献求助10
12秒前
13秒前
英俊鼠标发布了新的文献求助10
13秒前
仙笛童神完成签到,获得积分10
13秒前
中中完成签到,获得积分10
14秒前
15秒前
cy完成签到,获得积分20
16秒前
18秒前
鱼尾雯发布了新的文献求助10
18秒前
zzz完成签到,获得积分10
18秒前
CipherSage应助老迟到的逍遥采纳,获得10
19秒前
psj发布了新的文献求助10
19秒前
魏坤琳完成签到,获得积分10
20秒前
体贴的若剑完成签到,获得积分10
21秒前
xiaoxx完成签到,获得积分20
23秒前
23秒前
23秒前
小杨完成签到,获得积分10
23秒前
酷酷幻梦发布了新的文献求助10
27秒前
奕崽完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870