基质金属蛋白酶
材料科学
下调和上调
基质金属蛋白酶9
基质(化学分析)
细胞生物学
金属蛋白酶
癌症研究
生物医学工程
化学
医学
复合材料
生物
生物化学
内科学
基因
作者
Ying Li,Xin Zhang,Dannong He,Zhijie Ma,Ke Xue,Haiyan Li
标识
DOI:10.1016/j.actbio.2022.04.010
摘要
Diabetic chronic wounds are difficult to heal because of the presence of excessive inflammation and high overexpression of matrix metalloproteinase-9 (MMP-9), which greatly affects the quality of life of patients with diabetes and increases the risk of death. Thus, the regulation of excessive inflammation and inhibition of MMP-9 overexpression are effective strategies to improve diabetic wound healing. The present study is the first to demonstrate that ion products of 45S5 Bioglass® (BG) can work with small interfering RNA of MMP9 (MMP9-siRNA) to reduce MMP-9 expression in tissue-forming cells and enhance the synthesis of extracellular matrix proteins (ECMs). Specifically, the BG ionic products can stimulate macrophages to convert to M2 phenotype, thereby creating a proregenerative inflammation microenvironment to indirectly suppress the expression of MMP-9 in tissue-forming cells. Chitosan nanoparticles encapsulating MMP9-siRNA (MMP9-siNP) can directly lower MMP-9 expression in tissue-forming cells. In addition, BG ionic products can promote the vascularization of endothelial cells and ECM protein synthesis by fibroblasts. Thus, injectable BG/sodium alginate (BG/SA) hydrogels loaded with MMP9-siNP can significantly accelerate the healing process of full-thickness excision wounds of diabetic rats by decreasing MMP-9 expression, improving collagen synthesis, and enhancing angiogenesis in the wounds, thereby demonstrating their great application potential in treating diabetic chronic wounds. STATEMENT OF SIGNIFICANCE: Excessive inflammation and high overexpression of MMP-9 have been considered as factors that severely hinder the healing process of diabetic chronic wounds. Effective strategies are required for the regulation of excessive inflammation and inhibition of MMP-9 overexpression to enhance diabetic wound healing. In the present work, an injectable bioglass/sodium alginate (BG/SA) hydrogel loaded with MMP9-siNP was developed; this hydrogel significantly accelerated the healing process of full-thickness excision wounds of diabetic rats by decreasing MMP-9 expression, improving collagen accumulation, and enhancing angiogenesis in the wounds. Thus, the BG/SA hydrogel loaded with MMP9-siNP has great potential for use in healing of diabetic chronic wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI