光热治疗
活性氧
癌症
磁共振成像
体内
癌症研究
材料科学
联合疗法
纳米颗粒
癌细胞
纳米技术
化学
医学
药理学
生物
内科学
生物化学
生物技术
放射科
作者
Zhian Chen,Zhenhao Li,Chuangji Li,Huilin Huang,Yingxin Ren,Zhenyuan Li,Yanfeng Hu,Weihong Guo
出处
期刊:Drug Delivery
[Informa]
日期:2022-04-09
卷期号:29 (1): 1201-1211
被引量:33
标识
DOI:10.1080/10717544.2022.2059124
摘要
Gastric cancer (GC) is a serious disease with high morbidity and mortality rates worldwide. Chemotherapy plays a key role in GC treatment, while inevitable drug resistance and systematic side effects hinder its clinical application. Fenton chemistry-based chemodynamic therapy (CDT) has been used as a strategy for cancer ferroptosis, and the CDT efficiency could be enhanced by photothermal therapy (PTT). With the trend of treatment and diagnosis integration, the combination of magnetic resonance imaging (MRI) and CDT/PTT exhibits enormous progress. Herein, we constructed a platform based on PEGylated manganese-containing polydopamine (PDA) nanoparticles, named as PEG-PDA@Mn (PP@Mn) NPs. The PP@Mn NPs were stable and globular. Furthermore, they demonstrated near-infrared (NIR)-triggered PTT and Fenton-like reaction-based CDT effects and T1-weighted MRI capabilities. According to in vitro studies, the PP@Mn NPs trigger ferroptosis in cancer cells by producing abundant reactive oxygen species (ROS) via a Fenton-like reaction combined with PTT. Furthermore, in vivo studies showed that, under MRI guidance, the PP@Mn NPs combined with the PTT at the tumor region, have CDT anti-tumor effect. In conclusion, the PP@Mn NPs could provide an effective strategy for CDT/PTT synergistic ferroptosis therapy for GC.
科研通智能强力驱动
Strongly Powered by AbleSci AI