亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning

计算机科学 协同过滤 图形 人工智能 自然语言处理 理论计算机科学 推荐系统 机器学习
作者
Zihan Lin,Changxin Tian,Yupeng Hou,Wayne Xin Zhao
标识
DOI:10.1145/3485447.3512104
摘要

Recently, graph collaborative filtering methods have been proposed as an effective recommendation approach, which can capture users' preference over items by modeling the user-item interaction graphs. In order to reduce the influence of data sparsity, contrastive learning is adopted in graph collaborative filtering for enhancing the performance. However, these methods typically construct the contrastive pairs by random sampling, which neglect the neighboring relations among users (or items) and fail to fully exploit the potential of contrastive learning for recommendation. To tackle the above issue, we propose a novel contrastive learning approach, named Neighborhood-enriched Contrastive Learning, named NCL, which explicitly incorporates the potential neighbors into contrastive pairs. Specifically, we introduce the neighbors of a user (or an item) from graph structure and semantic space respectively. For the structural neighbors on the interaction graph, we develop a novel structure-contrastive objective that regards users (or items) and their structural neighbors as positive contrastive pairs. In implementation, the representations of users (or items) and neighbors correspond to the outputs of different GNN layers. Furthermore, to excavate the potential neighbor relation in semantic space, we assume that users with similar representations are within the semantic neighborhood, and incorporate these semantic neighbors into the prototype-contrastive objective. The proposed NCL can be optimized with EM algorithm and generalized to apply to graph collaborative filtering methods. Extensive experiments on five public datasets demonstrate the effectiveness of the proposed NCL, notably with 26% and 17% performance gain over a competitive graph collaborative filtering base model on the Yelp and Amazon-book datasets respectively. Our code is available at: https://github.com/RUCAIBox/NCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
30秒前
淡淡的秋柳完成签到 ,获得积分10
37秒前
li完成签到,获得积分10
38秒前
Owen应助Michelle采纳,获得10
39秒前
GPTea举报陈HIAHIA求助涉嫌违规
1分钟前
GPTea举报fanzi求助涉嫌违规
1分钟前
敏静完成签到,获得积分10
1分钟前
1分钟前
2分钟前
yxuan发布了新的文献求助10
2分钟前
上官若男应助yxuan采纳,获得10
2分钟前
2分钟前
fanssw完成签到 ,获得积分0
2分钟前
Michelle发布了新的文献求助10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
领导范儿应助ARESCI采纳,获得10
3分钟前
哈哈哈完成签到,获得积分10
3分钟前
xLi完成签到,获得积分10
3分钟前
聪慧青曼完成签到 ,获得积分10
3分钟前
Jasper应助hkx采纳,获得10
4分钟前
4分钟前
4分钟前
SciGPT应助文静的曼彤采纳,获得10
4分钟前
hkx发布了新的文献求助10
4分钟前
研究XPD的小麻薯完成签到,获得积分10
4分钟前
4分钟前
kukudou2发布了新的文献求助10
4分钟前
kukudou2完成签到,获得积分20
5分钟前
hkx完成签到,获得积分10
5分钟前
含辰惜应助hkx采纳,获得10
5分钟前
5分钟前
王晨光完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
科研通AI6应助sun采纳,获得10
6分钟前
Vino完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952358
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111116
捐赠科研通 3996993
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712