已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning

计算机科学 协同过滤 图形 人工智能 自然语言处理 理论计算机科学 推荐系统 机器学习
作者
Zihan Lin,Changxin Tian,Yupeng Hou,Wayne Xin Zhao
标识
DOI:10.1145/3485447.3512104
摘要

Recently, graph collaborative filtering methods have been proposed as an effective recommendation approach, which can capture users' preference over items by modeling the user-item interaction graphs. In order to reduce the influence of data sparsity, contrastive learning is adopted in graph collaborative filtering for enhancing the performance. However, these methods typically construct the contrastive pairs by random sampling, which neglect the neighboring relations among users (or items) and fail to fully exploit the potential of contrastive learning for recommendation. To tackle the above issue, we propose a novel contrastive learning approach, named Neighborhood-enriched Contrastive Learning, named NCL, which explicitly incorporates the potential neighbors into contrastive pairs. Specifically, we introduce the neighbors of a user (or an item) from graph structure and semantic space respectively. For the structural neighbors on the interaction graph, we develop a novel structure-contrastive objective that regards users (or items) and their structural neighbors as positive contrastive pairs. In implementation, the representations of users (or items) and neighbors correspond to the outputs of different GNN layers. Furthermore, to excavate the potential neighbor relation in semantic space, we assume that users with similar representations are within the semantic neighborhood, and incorporate these semantic neighbors into the prototype-contrastive objective. The proposed NCL can be optimized with EM algorithm and generalized to apply to graph collaborative filtering methods. Extensive experiments on five public datasets demonstrate the effectiveness of the proposed NCL, notably with 26% and 17% performance gain over a competitive graph collaborative filtering base model on the Yelp and Amazon-book datasets respectively. Our code is available at: https://github.com/RUCAIBox/NCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo发布了新的文献求助10
刚刚
刚刚
至秦完成签到,获得积分10
1秒前
2秒前
2秒前
4秒前
头头啊头头啊完成签到,获得积分10
4秒前
Notdodead应助畅通无阻采纳,获得10
4秒前
至秦发布了新的文献求助30
4秒前
张兔子发布了新的文献求助10
6秒前
科研通AI2S应助132采纳,获得30
7秒前
wimper发布了新的文献求助10
10秒前
wimper完成签到,获得积分10
15秒前
15秒前
17秒前
小药同学发布了新的文献求助10
18秒前
19秒前
Pu Chunyi发布了新的文献求助10
22秒前
漂亮白枫发布了新的文献求助10
22秒前
程程发布了新的文献求助10
24秒前
27秒前
27秒前
刺闰土的猹完成签到,获得积分10
27秒前
星辰大海应助漂亮白枫采纳,获得10
28秒前
学术圈边缘派遣员完成签到,获得积分10
28秒前
29秒前
30秒前
小肉包发布了新的文献求助10
33秒前
33秒前
33秒前
35秒前
35秒前
过时的毛豆完成签到,获得积分10
36秒前
J.发布了新的文献求助10
37秒前
程程完成签到,获得积分10
38秒前
SciGPT应助Xangel采纳,获得10
38秒前
Tewd完成签到,获得积分10
39秒前
领导范儿应助pokexuejiao采纳,获得20
41秒前
Tewd发布了新的文献求助10
42秒前
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989811
求助须知:如何正确求助?哪些是违规求助? 3531927
关于积分的说明 11255560
捐赠科研通 3270706
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190