Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning

计算机科学 协同过滤 图形 人工智能 自然语言处理 理论计算机科学 推荐系统 机器学习
作者
Zihan Lin,Changxin Tian,Yupeng Hou,Wayne Xin Zhao
标识
DOI:10.1145/3485447.3512104
摘要

Recently, graph collaborative filtering methods have been proposed as an\neffective recommendation approach, which can capture users' preference over\nitems by modeling the user-item interaction graphs. In order to reduce the\ninfluence of data sparsity, contrastive learning is adopted in graph\ncollaborative filtering for enhancing the performance. However, these methods\ntypically construct the contrastive pairs by random sampling, which neglect the\nneighboring relations among users (or items) and fail to fully exploit the\npotential of contrastive learning for recommendation. To tackle the above\nissue, we propose a novel contrastive learning approach, named\nNeighborhood-enriched Contrastive Learning, named NCL, which explicitly\nincorporates the potential neighbors into contrastive pairs. Specifically, we\nintroduce the neighbors of a user (or an item) from graph structure and\nsemantic space respectively. For the structural neighbors on the interaction\ngraph, we develop a novel structure-contrastive objective that regards users\n(or items) and their structural neighbors as positive contrastive pairs. In\nimplementation, the representations of users (or items) and neighbors\ncorrespond to the outputs of different GNN layers. Furthermore, to excavate the\npotential neighbor relation in semantic space, we assume that users with\nsimilar representations are within the semantic neighborhood, and incorporate\nthese semantic neighbors into the prototype-contrastive objective. The proposed\nNCL can be optimized with EM algorithm and generalized to apply to graph\ncollaborative filtering methods. Extensive experiments on five public datasets\ndemonstrate the effectiveness of the proposed NCL, notably with 26% and 17%\nperformance gain over a competitive graph collaborative filtering base model on\nthe Yelp and Amazon-book datasets respectively. Our code is available at:\nhttps://github.com/RUCAIBox/NCL.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
管遥发布了新的文献求助20
刚刚
刚刚
1秒前
嘟嘟发布了新的文献求助10
1秒前
王玥1266完成签到,获得积分10
1秒前
热情嘉懿完成签到,获得积分10
1秒前
英吉利25发布了新的文献求助10
1秒前
Qi半仙发布了新的文献求助10
3秒前
LJQ完成签到,获得积分10
3秒前
科研的神发布了新的文献求助10
3秒前
3秒前
CipherSage应助hpj采纳,获得10
3秒前
L111完成签到,获得积分20
4秒前
4秒前
沉静怀绿关注了科研通微信公众号
4秒前
windmelody完成签到,获得积分10
5秒前
5秒前
王玥1266发布了新的文献求助10
6秒前
Meddy发布了新的文献求助20
6秒前
科研通AI2S应助颜凡桃采纳,获得10
6秒前
深情安青应助Grace采纳,获得10
7秒前
gyh发布了新的文献求助10
7秒前
hijuddy完成签到,获得积分20
7秒前
Qi半仙完成签到,获得积分10
7秒前
meltconstraint完成签到,获得积分10
8秒前
赵凯完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
欢喜昊焱发布了新的文献求助10
8秒前
xx发布了新的文献求助10
9秒前
Nann完成签到 ,获得积分10
10秒前
11秒前
烟花应助随想采纳,获得10
12秒前
liyuxuan完成签到,获得积分10
12秒前
十一点二十八分完成签到 ,获得积分10
12秒前
香蕉觅云应助hijuddy采纳,获得30
13秒前
无限白羊发布了新的文献求助10
13秒前
13秒前
14秒前
笨笨易绿发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480228
求助须知:如何正确求助?哪些是违规求助? 4581437
关于积分的说明 14380635
捐赠科研通 4510045
什么是DOI,文献DOI怎么找? 2471647
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786