亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning

计算机科学 协同过滤 图形 人工智能 自然语言处理 理论计算机科学 推荐系统 机器学习
作者
Zihan Lin,Changxin Tian,Yupeng Hou,Wayne Xin Zhao
标识
DOI:10.1145/3485447.3512104
摘要

Recently, graph collaborative filtering methods have been proposed as an\neffective recommendation approach, which can capture users' preference over\nitems by modeling the user-item interaction graphs. In order to reduce the\ninfluence of data sparsity, contrastive learning is adopted in graph\ncollaborative filtering for enhancing the performance. However, these methods\ntypically construct the contrastive pairs by random sampling, which neglect the\nneighboring relations among users (or items) and fail to fully exploit the\npotential of contrastive learning for recommendation. To tackle the above\nissue, we propose a novel contrastive learning approach, named\nNeighborhood-enriched Contrastive Learning, named NCL, which explicitly\nincorporates the potential neighbors into contrastive pairs. Specifically, we\nintroduce the neighbors of a user (or an item) from graph structure and\nsemantic space respectively. For the structural neighbors on the interaction\ngraph, we develop a novel structure-contrastive objective that regards users\n(or items) and their structural neighbors as positive contrastive pairs. In\nimplementation, the representations of users (or items) and neighbors\ncorrespond to the outputs of different GNN layers. Furthermore, to excavate the\npotential neighbor relation in semantic space, we assume that users with\nsimilar representations are within the semantic neighborhood, and incorporate\nthese semantic neighbors into the prototype-contrastive objective. The proposed\nNCL can be optimized with EM algorithm and generalized to apply to graph\ncollaborative filtering methods. Extensive experiments on five public datasets\ndemonstrate the effectiveness of the proposed NCL, notably with 26% and 17%\nperformance gain over a competitive graph collaborative filtering base model on\nthe Yelp and Amazon-book datasets respectively. Our code is available at:\nhttps://github.com/RUCAIBox/NCL.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助外向又菱采纳,获得10
28秒前
zeice完成签到 ,获得积分10
39秒前
49秒前
MonkeyKing发布了新的文献求助10
52秒前
外向又菱发布了新的文献求助10
55秒前
56秒前
叙温雨发布了新的文献求助10
59秒前
小二郎应助MonkeyKing采纳,获得10
1分钟前
Hello应助外向又菱采纳,获得10
1分钟前
1分钟前
外向又菱完成签到,获得积分10
1分钟前
MOMOMOMO发布了新的文献求助10
1分钟前
CodeCraft应助cc采纳,获得10
1分钟前
崖涯完成签到 ,获得积分10
1分钟前
MOMOMOMO完成签到,获得积分10
1分钟前
1分钟前
Thanks完成签到 ,获得积分10
1分钟前
顾矜应助叙温雨采纳,获得10
1分钟前
lml发布了新的文献求助10
1分钟前
感谢完成签到,获得积分10
1分钟前
共享精神应助感谢采纳,获得10
2分钟前
2分钟前
陈杰完成签到,获得积分10
2分钟前
感谢发布了新的文献求助10
2分钟前
Hedy完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
2分钟前
叙温雨发布了新的文献求助10
2分钟前
搜集达人应助叙温雨采纳,获得10
3分钟前
执着的香薇完成签到 ,获得积分10
3分钟前
3分钟前
cc发布了新的文献求助10
3分钟前
dynamoo应助guan采纳,获得30
3分钟前
3分钟前
叙温雨发布了新的文献求助10
3分钟前
陈词丶发布了新的文献求助10
4分钟前
CCccCCC完成签到,获得积分20
4分钟前
4分钟前
CCccCCC发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291706
求助须知:如何正确求助?哪些是违规求助? 4442649
关于积分的说明 13830222
捐赠科研通 4325779
什么是DOI,文献DOI怎么找? 2374461
邀请新用户注册赠送积分活动 1369766
关于科研通互助平台的介绍 1334072