Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning

计算机科学 协同过滤 图形 人工智能 自然语言处理 理论计算机科学 推荐系统 机器学习
作者
Zihan Lin,Changxin Tian,Yupeng Hou,Wayne Xin Zhao
标识
DOI:10.1145/3485447.3512104
摘要

Recently, graph collaborative filtering methods have been proposed as an effective recommendation approach, which can capture users' preference over items by modeling the user-item interaction graphs. In order to reduce the influence of data sparsity, contrastive learning is adopted in graph collaborative filtering for enhancing the performance. However, these methods typically construct the contrastive pairs by random sampling, which neglect the neighboring relations among users (or items) and fail to fully exploit the potential of contrastive learning for recommendation. To tackle the above issue, we propose a novel contrastive learning approach, named Neighborhood-enriched Contrastive Learning, named NCL, which explicitly incorporates the potential neighbors into contrastive pairs. Specifically, we introduce the neighbors of a user (or an item) from graph structure and semantic space respectively. For the structural neighbors on the interaction graph, we develop a novel structure-contrastive objective that regards users (or items) and their structural neighbors as positive contrastive pairs. In implementation, the representations of users (or items) and neighbors correspond to the outputs of different GNN layers. Furthermore, to excavate the potential neighbor relation in semantic space, we assume that users with similar representations are within the semantic neighborhood, and incorporate these semantic neighbors into the prototype-contrastive objective. The proposed NCL can be optimized with EM algorithm and generalized to apply to graph collaborative filtering methods. Extensive experiments on five public datasets demonstrate the effectiveness of the proposed NCL, notably with 26% and 17% performance gain over a competitive graph collaborative filtering base model on the Yelp and Amazon-book datasets respectively. Our code is available at: https://github.com/RUCAIBox/NCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名之辈完成签到,获得积分10
刚刚
Andy完成签到,获得积分10
刚刚
Orange应助muek采纳,获得10
刚刚
cctv18应助小会采纳,获得10
1秒前
bkagyin应助会飞的猪采纳,获得10
1秒前
3秒前
4秒前
不安士晋完成签到,获得积分10
4秒前
Dylan完成签到 ,获得积分10
4秒前
4秒前
雁阵惊寒完成签到,获得积分10
5秒前
碧蓝的盼夏发布了新的文献求助150
5秒前
落寞白曼完成签到,获得积分10
6秒前
chu完成签到,获得积分10
6秒前
格非完成签到,获得积分10
7秒前
7秒前
白石杏完成签到,获得积分10
7秒前
Nhiii发布了新的文献求助10
7秒前
图苏完成签到 ,获得积分10
7秒前
宁夕完成签到 ,获得积分10
8秒前
黑黑黑完成签到,获得积分10
8秒前
ccy发布了新的文献求助10
9秒前
louyu完成签到 ,获得积分10
10秒前
于祈完成签到 ,获得积分10
11秒前
希望天下0贩的0应助绯月采纳,获得10
11秒前
11秒前
cc爱学习完成签到,获得积分10
11秒前
Derek完成签到,获得积分10
12秒前
干净之槐完成签到,获得积分10
12秒前
腼腆的小熊猫完成签到 ,获得积分10
12秒前
大方博涛完成签到,获得积分10
12秒前
12秒前
田様应助文艺的冬卉采纳,获得10
13秒前
星辰大海应助lulu采纳,获得10
13秒前
张金森完成签到,获得积分10
13秒前
鲍复天完成签到,获得积分10
13秒前
Xiaoxin_Ju完成签到,获得积分10
13秒前
April完成签到,获得积分10
14秒前
脑洞疼应助北林采纳,获得10
14秒前
John完成签到,获得积分10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244993
求助须知:如何正确求助?哪些是违规求助? 2888654
关于积分的说明 8254529
捐赠科研通 2557066
什么是DOI,文献DOI怎么找? 1385741
科研通“疑难数据库(出版商)”最低求助积分说明 650214
邀请新用户注册赠送积分活动 626422