Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning

计算机科学 协同过滤 图形 人工智能 自然语言处理 理论计算机科学 推荐系统 机器学习
作者
Zihan Lin,Changxin Tian,Yupeng Hou,Wayne Xin Zhao
标识
DOI:10.1145/3485447.3512104
摘要

Recently, graph collaborative filtering methods have been proposed as an effective recommendation approach, which can capture users' preference over items by modeling the user-item interaction graphs. In order to reduce the influence of data sparsity, contrastive learning is adopted in graph collaborative filtering for enhancing the performance. However, these methods typically construct the contrastive pairs by random sampling, which neglect the neighboring relations among users (or items) and fail to fully exploit the potential of contrastive learning for recommendation. To tackle the above issue, we propose a novel contrastive learning approach, named Neighborhood-enriched Contrastive Learning, named NCL, which explicitly incorporates the potential neighbors into contrastive pairs. Specifically, we introduce the neighbors of a user (or an item) from graph structure and semantic space respectively. For the structural neighbors on the interaction graph, we develop a novel structure-contrastive objective that regards users (or items) and their structural neighbors as positive contrastive pairs. In implementation, the representations of users (or items) and neighbors correspond to the outputs of different GNN layers. Furthermore, to excavate the potential neighbor relation in semantic space, we assume that users with similar representations are within the semantic neighborhood, and incorporate these semantic neighbors into the prototype-contrastive objective. The proposed NCL can be optimized with EM algorithm and generalized to apply to graph collaborative filtering methods. Extensive experiments on five public datasets demonstrate the effectiveness of the proposed NCL, notably with 26% and 17% performance gain over a competitive graph collaborative filtering base model on the Yelp and Amazon-book datasets respectively. Our code is available at: https://github.com/RUCAIBox/NCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxllllll发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
YamDaamCaa应助科研通管家采纳,获得50
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
稳重淇完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
daaarrr完成签到,获得积分10
9秒前
非一发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
乐乐应助事在人为采纳,获得10
15秒前
16秒前
jisujun完成签到,获得积分20
16秒前
41应助momo采纳,获得10
17秒前
DijiaXu应助jszhoucl采纳,获得10
19秒前
热爱科研的小白鼠完成签到,获得积分10
19秒前
19秒前
爱穿毛袜完成签到,获得积分10
20秒前
大模型应助LJJ采纳,获得10
20秒前
spirit完成签到 ,获得积分10
21秒前
思源应助hhh采纳,获得10
21秒前
22秒前
正直的魔镜完成签到 ,获得积分10
23秒前
25秒前
KM比比发布了新的文献求助10
26秒前
如此完成签到,获得积分10
26秒前
qq完成签到 ,获得积分10
27秒前
qqq发布了新的文献求助10
28秒前
火星上鑫鹏完成签到,获得积分10
28秒前
事在人为发布了新的文献求助10
28秒前
沉默的婴发布了新的文献求助20
29秒前
杨涵完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173