Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning

计算机科学 协同过滤 图形 人工智能 自然语言处理 理论计算机科学 推荐系统 机器学习
作者
Zihan Lin,Changxin Tian,Yupeng Hou,Wayne Xin Zhao
标识
DOI:10.1145/3485447.3512104
摘要

Recently, graph collaborative filtering methods have been proposed as an effective recommendation approach, which can capture users' preference over items by modeling the user-item interaction graphs. In order to reduce the influence of data sparsity, contrastive learning is adopted in graph collaborative filtering for enhancing the performance. However, these methods typically construct the contrastive pairs by random sampling, which neglect the neighboring relations among users (or items) and fail to fully exploit the potential of contrastive learning for recommendation. To tackle the above issue, we propose a novel contrastive learning approach, named Neighborhood-enriched Contrastive Learning, named NCL, which explicitly incorporates the potential neighbors into contrastive pairs. Specifically, we introduce the neighbors of a user (or an item) from graph structure and semantic space respectively. For the structural neighbors on the interaction graph, we develop a novel structure-contrastive objective that regards users (or items) and their structural neighbors as positive contrastive pairs. In implementation, the representations of users (or items) and neighbors correspond to the outputs of different GNN layers. Furthermore, to excavate the potential neighbor relation in semantic space, we assume that users with similar representations are within the semantic neighborhood, and incorporate these semantic neighbors into the prototype-contrastive objective. The proposed NCL can be optimized with EM algorithm and generalized to apply to graph collaborative filtering methods. Extensive experiments on five public datasets demonstrate the effectiveness of the proposed NCL, notably with 26% and 17% performance gain over a competitive graph collaborative filtering base model on the Yelp and Amazon-book datasets respectively. Our code is available at: https://github.com/RUCAIBox/NCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
北城完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
9秒前
爱听歌电灯胆完成签到 ,获得积分10
9秒前
不爱吃西葫芦完成签到 ,获得积分10
10秒前
申燕婷完成签到 ,获得积分10
11秒前
橙子完成签到 ,获得积分10
13秒前
ruochenzu发布了新的文献求助10
13秒前
fusheng完成签到 ,获得积分10
22秒前
浮生完成签到 ,获得积分10
27秒前
xinjie完成签到,获得积分10
29秒前
Will完成签到,获得积分10
34秒前
cuddly完成签到 ,获得积分10
35秒前
掉头发的小白完成签到,获得积分10
36秒前
不想看文献完成签到 ,获得积分10
39秒前
40秒前
当女遇到乔完成签到 ,获得积分10
40秒前
独行者完成签到,获得积分10
41秒前
眼睛大的电脑完成签到,获得积分10
41秒前
43秒前
敏敏发布了新的文献求助10
44秒前
木木完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
45秒前
JamesPei应助科研通管家采纳,获得10
46秒前
彭于晏应助科研通管家采纳,获得10
46秒前
如意2023完成签到 ,获得积分10
46秒前
fomo完成签到,获得积分10
50秒前
nagi发布了新的文献求助10
53秒前
jfeng完成签到,获得积分10
55秒前
JN完成签到,获得积分10
1分钟前
忐忑的书桃完成签到 ,获得积分10
1分钟前
qaplay完成签到 ,获得积分0
1分钟前
友好语风完成签到,获得积分10
1分钟前
CLTTTt完成签到,获得积分10
1分钟前
yk完成签到,获得积分10
1分钟前
甜美的初蓝完成签到 ,获得积分10
1分钟前
早安完成签到 ,获得积分10
1分钟前
初昀杭完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022