亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of Depth of Coma Using Complexity Measures and Nonlinear Features of Electroencephalogram Signals.

脑电图 意识 判别式 人工智能 模式识别(心理学) 彗差(光学) 计算机科学 熵(时间箭头) 意识水平 非线性系统 语音识别
作者
Çiğdem Gülüzar Altıntop,Fatma Latifoğlu,Aynur Karayol Akın,Adnan Bayram,Murat Çiftçi
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:: 2250018-2250018
标识
DOI:10.1142/s0129065722500186
摘要

In recent years, some electrophysiological analysis methods of consciousness have been proposed. Most of these studies are based on visual interpretation or statistical analysis, and there is hardly any work classifying the level of consciousness in a deep coma. In this study, we perform an analysis of electroencephalography complexity measures by quantifying features efficiency in differentiating patients in different consciousness levels. Several measures of complexity have been proposed to quantify the complexity of signals. Our aim is to lay the foundation of a system that will objectively define the level of consciousness by performing a complexity analysis of Electroencephalogram (EEG) signals. Therefore, a nonlinear analysis of EEG signals obtained with a recording scheme proposed by us from 39 patients with Glasgow Coma Scale (GCS) between 3 and 8 was performed. Various entropy values (approximate entropy, permutation entropy, etc.) obtained from different algorithms, Hjorth parameters, Lempel-Ziv complexity and Kolmogorov complexity values were extracted from the signals as features. The features were analyzed statistically and the success of features in classifying different levels of consciousness was measured by various classifiers. Consequently, levels of consciousness in deep coma (GCS between 3 and 8) were classified with an accuracy of 90.3%. To the authors' best knowledge, this is the first demonstration of the discriminative nonlinear features extracted from tactile and auditory stimuli EEG signals in distinguishing different GCSs of comatose patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助qianchang采纳,获得10
12秒前
萝卜完成签到 ,获得积分10
32秒前
44秒前
好好发布了新的文献求助10
47秒前
寻道图强应助阳阳阳采纳,获得50
58秒前
Ava应助好好采纳,获得10
1分钟前
uziMOF发布了新的文献求助10
1分钟前
蕊蕊蕊完成签到 ,获得积分10
1分钟前
Orange应助qianchang采纳,获得10
1分钟前
1分钟前
2分钟前
qianchang发布了新的文献求助10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
qianchang发布了新的文献求助10
2分钟前
janice发布了新的文献求助10
2分钟前
3分钟前
可爱的函函应助janice采纳,获得10
3分钟前
3分钟前
janice完成签到,获得积分20
3分钟前
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得30
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
爱静静应助科研通管家采纳,获得30
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
好好发布了新的文献求助10
3分钟前
薇伊发布了新的文献求助20
4分钟前
4分钟前
打打应助兰贵人采纳,获得10
4分钟前
田様应助wenwen0666采纳,获得20
4分钟前
5分钟前
wenwen0666发布了新的文献求助20
5分钟前
好好完成签到,获得积分10
5分钟前
华仔应助Hayat采纳,获得30
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234564
求助须知:如何正确求助?哪些是违规求助? 2880918
关于积分的说明 8217339
捐赠科研通 2548510
什么是DOI,文献DOI怎么找? 1377809
科研通“疑难数据库(出版商)”最低求助积分说明 648006
邀请新用户注册赠送积分活动 623361