Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection

运输工程 选择(遗传算法) 交通拥挤 计算机科学 业务 工程类 人工智能
作者
Sheng Liu,Auyon Siddiq,Jingwei Zhang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:6
标识
DOI:10.2139/ssrn.4055703
摘要

Urban infrastructure is essential to building sustainable cities. In recent years, municipal governments have invested heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce emissions. However, re-allocating vehicle capacity in a road network to cycling is often contentious due to the risk of amplifying traffic congestion. In this paper, we develop a method for planning bike lane networks that accounts for ridership and congestion effects. We first present an estimator for recovering unknown parameters of a traffic equilibrium model from features of a road network and observed vehicle flows, which we show asymptotically recovers ground-truth parameters as the network grows large. We then present a prescriptive model that recommends paths in a road network for bike lane construction while endogenizing cycling demand, driver route choice, and driving travel times. In an empirical study on the City of Chicago, we bring together data on the road and bike lane networks, vehicle flows, travel mode choices, bike share trips, driving and cycling routes, and taxi trips to estimate the impact of expanding Chicago's bike lane network. We estimate that adding 25 miles of bike lanes as prescribed by our model can lift ridership from 3.9% to 6.9%, with at most an 8% increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes, which highlights the value of a holistic and data-driven approach to urban infrastructure planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻的麦片完成签到,获得积分20
刚刚
刚刚
君君完成签到,获得积分10
1秒前
cchen0902完成签到,获得积分10
1秒前
Sara发布了新的文献求助10
1秒前
1秒前
干饭闪电狼完成签到,获得积分10
2秒前
YUZU完成签到,获得积分10
3秒前
123完成签到,获得积分10
4秒前
pcx完成签到,获得积分10
4秒前
phd完成签到,获得积分10
5秒前
5秒前
曹志毅完成签到,获得积分10
5秒前
mito发布了新的文献求助10
6秒前
无悔呀发布了新的文献求助10
6秒前
7秒前
君君发布了新的文献求助10
7秒前
Yang完成签到,获得积分10
8秒前
风雨完成签到,获得积分10
8秒前
8秒前
9秒前
彭于晏应助小西采纳,获得30
9秒前
可爱的函函应助布布采纳,获得10
10秒前
11秒前
轩辕德地发布了新的文献求助10
11秒前
nine发布了新的文献求助30
11秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
12秒前
JamesPei应助小敦采纳,获得10
12秒前
今非发布了新的文献求助10
12秒前
李健的小迷弟应助通~采纳,获得30
12秒前
12秒前
12秒前
fanfan44390发布了新的文献求助10
12秒前
Zhang完成签到,获得积分10
13秒前
小二郎应助小田采纳,获得10
14秒前
14秒前
隐形曼青应助liike采纳,获得10
14秒前
phd发布了新的文献求助10
14秒前
14秒前
dingdong发布了新的文献求助30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794