已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection

运输工程 选择(遗传算法) 交通拥挤 计算机科学 业务 工程类 人工智能
作者
Sheng Liu,Auyon Siddiq,Jingwei Zhang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:6
标识
DOI:10.2139/ssrn.4055703
摘要

Urban infrastructure is essential to building sustainable cities. In recent years, municipal governments have invested heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce emissions. However, re-allocating vehicle capacity in a road network to cycling is often contentious due to the risk of amplifying traffic congestion. In this paper, we develop a method for planning bike lane networks that accounts for ridership and congestion effects. We first present an estimator for recovering unknown parameters of a traffic equilibrium model from features of a road network and observed vehicle flows, which we show asymptotically recovers ground-truth parameters as the network grows large. We then present a prescriptive model that recommends paths in a road network for bike lane construction while endogenizing cycling demand, driver route choice, and driving travel times. In an empirical study on the City of Chicago, we bring together data on the road and bike lane networks, vehicle flows, travel mode choices, bike share trips, driving and cycling routes, and taxi trips to estimate the impact of expanding Chicago's bike lane network. We estimate that adding 25 miles of bike lanes as prescribed by our model can lift ridership from 3.9% to 6.9%, with at most an 8% increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes, which highlights the value of a holistic and data-driven approach to urban infrastructure planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
852应助研友_8y2G0L采纳,获得10
3秒前
lh发布了新的文献求助10
3秒前
何hyy完成签到 ,获得积分10
4秒前
汉堡包应助威武的远锋采纳,获得10
4秒前
yy发布了新的文献求助10
7秒前
zho发布了新的文献求助20
8秒前
11秒前
12秒前
小幸运发布了新的文献求助10
15秒前
晒暖发布了新的文献求助10
16秒前
无花果应助研友_8y2G0L采纳,获得10
16秒前
Owen应助气945采纳,获得10
17秒前
17秒前
无月完成签到 ,获得积分10
17秒前
17秒前
烟花应助解青文采纳,获得10
21秒前
21秒前
21秒前
绵绵完成签到 ,获得积分10
22秒前
伶俐一曲发布了新的文献求助10
22秒前
Stealer发布了新的文献求助10
23秒前
23秒前
爬不起来完成签到,获得积分10
23秒前
26秒前
27秒前
2233223完成签到,获得积分10
32秒前
星辰大海应助hbgsns采纳,获得10
33秒前
科研通AI2S应助hey采纳,获得10
33秒前
lh完成签到,获得积分10
33秒前
可爱的函函应助kakin采纳,获得10
36秒前
端庄的孤风完成签到 ,获得积分10
38秒前
40秒前
Orange应助YEM采纳,获得10
40秒前
wenbin发布了新的文献求助200
42秒前
42秒前
Orange应助guanglei采纳,获得10
43秒前
44秒前
完美世界应助是漏漏呀采纳,获得10
45秒前
满意丹云完成签到,获得积分20
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298513
求助须知:如何正确求助?哪些是违规求助? 2933568
关于积分的说明 8463901
捐赠科研通 2606513
什么是DOI,文献DOI怎么找? 1423230
科研通“疑难数据库(出版商)”最低求助积分说明 661589
邀请新用户注册赠送积分活动 645063