Magnetic-Field Effect as a Tool to Investigate Electron Correlation in Strong-Field Ionization

物理 电子 双电离 电离 原子物理学 磁场 离散偶极子近似 偶极子 光离子化 电子相关 领域(数学) 飞秒 量子隧道 激光器 凝聚态物理 离子 光学 量子力学 数学 纯数学
作者
Kang Lin,Xiang Chen,S. Eckart,Hui Jiang,Alexander Hartung,D. Trabert,K. Fehre,J. Rist,Lothar Schmidt,M. S. Schöffler,T. Jahnke,Maksim Kunitski,Feng He,R. Dörner
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:128 (11) 被引量:12
标识
DOI:10.1103/physrevlett.128.113201
摘要

The influence of the magnetic component of the driving electromagnetic field is often neglected when investigating light-matter interaction. We show that the magnetic component of the light field plays an important role in nonsequential double ionization, which serves as a powerful tool to investigate electron correlation. We investigate the magnetic-field effects in double ionization of xenon atoms driven by near-infrared ultrashort femtosecond laser pulses and find that the mean forward shift of the electron momentum distribution in light-propagation direction agrees well with the classical prediction, where no under-barrier or recollisional nondipole enhancement is observed. By extending classical trajectory Monte Carlo simulations beyond the dipole approximation, we reveal that double ionization proceeds via recollision-induced doubly excited states, followed by subsequent sequential over-barrier field ionization of the two electrons. In agreement with this model, the binding energies do not lead to an additional nondipole forward shift of the electrons. Our findings provide a new method to study electron correlation by exploiting the effect of the magnetic component of the electromagnetic field.Received 7 January 2022Accepted 25 February 2022DOI:https://doi.org/10.1103/PhysRevLett.128.113201© 2022 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasAtomic & molecular processes in external fieldsMultiphoton or tunneling ionization & excitationStrong electromagnetic field effectsUltrafast phenomenaAtomic, Molecular & Optical

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ge完成签到,获得积分10
刚刚
乐乐应助wwww采纳,获得10
1秒前
Cyrus2022发布了新的文献求助30
1秒前
今后应助gdh采纳,获得10
1秒前
yeurekar完成签到,获得积分10
2秒前
直率翠绿完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
aerosol完成签到,获得积分10
3秒前
彭于晏应助大胆的岂愈采纳,获得10
3秒前
香蕉觅云应助May采纳,获得10
3秒前
4秒前
万能图书馆应助ooooodai采纳,获得10
4秒前
5秒前
开心酬海发布了新的文献求助10
5秒前
cxh完成签到,获得积分20
6秒前
游一完成签到,获得积分10
7秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
dayaya完成签到,获得积分10
8秒前
共享精神应助哈哈哈采纳,获得10
8秒前
8秒前
8秒前
情怀应助gyx采纳,获得10
10秒前
10秒前
燕子发布了新的文献求助10
10秒前
10秒前
11秒前
迅速不可发布了新的文献求助10
11秒前
11秒前
欢喜的棉花糖应助薄荷采纳,获得10
11秒前
11秒前
11秒前
SciGPT应助张铭哲采纳,获得10
12秒前
脑洞疼应助QWER采纳,获得10
12秒前
程破茧完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238