亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Magnetic-Field Effect as a Tool to Investigate Electron Correlation in Strong-Field Ionization

物理 电子 双电离 电离 原子物理学 磁场 离散偶极子近似 偶极子 光离子化 电子相关 领域(数学) 飞秒 量子隧道 激光器 凝聚态物理 离子 光学 量子力学 数学 纯数学
作者
Kang Lin,Xiang Chen,S. Eckart,Hui Jiang,Alexander Hartung,D. Trabert,K. Fehre,J. Rist,Lothar Schmidt,M. S. Schöffler,T. Jahnke,Maksim Kunitski,Feng He,R. Dörner
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:128 (11) 被引量:12
标识
DOI:10.1103/physrevlett.128.113201
摘要

The influence of the magnetic component of the driving electromagnetic field is often neglected when investigating light-matter interaction. We show that the magnetic component of the light field plays an important role in nonsequential double ionization, which serves as a powerful tool to investigate electron correlation. We investigate the magnetic-field effects in double ionization of xenon atoms driven by near-infrared ultrashort femtosecond laser pulses and find that the mean forward shift of the electron momentum distribution in light-propagation direction agrees well with the classical prediction, where no under-barrier or recollisional nondipole enhancement is observed. By extending classical trajectory Monte Carlo simulations beyond the dipole approximation, we reveal that double ionization proceeds via recollision-induced doubly excited states, followed by subsequent sequential over-barrier field ionization of the two electrons. In agreement with this model, the binding energies do not lead to an additional nondipole forward shift of the electrons. Our findings provide a new method to study electron correlation by exploiting the effect of the magnetic component of the electromagnetic field.Received 7 January 2022Accepted 25 February 2022DOI:https://doi.org/10.1103/PhysRevLett.128.113201© 2022 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasAtomic & molecular processes in external fieldsMultiphoton or tunneling ionization & excitationStrong electromagnetic field effectsUltrafast phenomenaAtomic, Molecular & Optical

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年鱼精完成签到 ,获得积分10
3秒前
小胖完成签到 ,获得积分10
8秒前
酒渡完成签到,获得积分10
10秒前
10秒前
久久丫完成签到 ,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
muuuu发布了新的文献求助10
16秒前
Hugo完成签到,获得积分10
22秒前
xirang2完成签到,获得积分10
30秒前
41秒前
Rita发布了新的文献求助10
48秒前
Hugo发布了新的文献求助20
50秒前
CipherSage应助超级野狼采纳,获得10
55秒前
沉静的毛衣完成签到,获得积分10
57秒前
小马甲应助Lh采纳,获得10
58秒前
1分钟前
1分钟前
温水完成签到 ,获得积分10
1分钟前
超级野狼发布了新的文献求助10
1分钟前
crx发布了新的文献求助10
1分钟前
撒旦啊实打实的完成签到,获得积分10
1分钟前
可爱的函函应助Guts采纳,获得10
1分钟前
科研通AI6.1应助Guts采纳,获得10
1分钟前
乐乐应助材料生采纳,获得10
1分钟前
CodeCraft应助crx采纳,获得10
1分钟前
淡淡的秋柳完成签到 ,获得积分10
1分钟前
1分钟前
和光同尘完成签到,获得积分10
1分钟前
柚子完成签到 ,获得积分10
1分钟前
材料生发布了新的文献求助10
1分钟前
1分钟前
1分钟前
万事胜意完成签到 ,获得积分10
1分钟前
1分钟前
minkeyantong完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475