Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction

催化作用 材料科学 多孔性 退火(玻璃) 化学工程 无定形固体 分子 碳纤维 氧气 纳米技术 结晶学 化学 复合材料 有机化学 复合数 工程类 冶金
作者
Jae Young Jung,Sungjun Kim,Jeong-Gil Kim,Min Ji Kim,Kug‐Seung Lee,Yung‐Eun Sung,Pil Kim,Sung Jong Yoo,Hyung‐Kyu Lim,Nam Dong Kim
出处
期刊:Nano Energy [Elsevier]
卷期号:97: 107206-107206 被引量:27
标识
DOI:10.1016/j.nanoen.2022.107206
摘要

Hierarchical pore structure is crucial for effective mass transfer and utilization of a number of active sites in single-metal atom catalysts. Here, we present a strategy for developing a hierarchical porous structure in single-wall carbon nanohorns with Co-N x sites (Co/CNH) and maximizing their oxygen reduction activity. Thermal annealing is effective for generating hierarchical pore by removing amorphous carbons and opening internal and interstitial pore channels. Ammonia annealing modifies coordination structure and relieves local strain around cobalt atoms to form more ideal Co-N 4 -C moieties. DFT calculations reveal that the enhanced intrinsic catalytic activity ( i k = 60.16 mA cm -2 for Co/CNH Air NH 3 vs. 8.24 mA cm -2 for Pt/C) is attributed to the ligand-push effect of water molecules on the other side of Co-N 4 sites. In a single-cell experiment, a power density of 742 mW cm -2 was achieved, which is the remarkable high value among M-N-C catalysts to the best of our knowledge. • We synthesized a hierarchical porous single-wall carbon nanohorns with Co-N x sites. • Annealing played a critical role in the formation of hierarchical porous structures. • A superior activity was achieved, which is 7.3 times higher than commercial Pt/C. • The high catalytic activity originates from ligand push effect of the water to Co-N 4 . • A power density of 742 mW cm -2 was achieved, which is remarkable high performance among SACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RC_Wang应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得30
1秒前
sutharsons应助科研通管家采纳,获得30
1秒前
归海含烟完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
shire应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
RC_Wang应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
匹诺曹发布了新的文献求助10
2秒前
唐画完成签到 ,获得积分10
2秒前
2秒前
2秒前
淡淡采白关注了科研通微信公众号
3秒前
tY完成签到,获得积分20
3秒前
傲娇的凡旋应助卢健辉采纳,获得10
4秒前
CodeCraft应助calbee采纳,获得10
4秒前
6秒前
6秒前
sw98318完成签到,获得积分10
7秒前
impala完成签到,获得积分10
7秒前
7秒前
欣喜访旋发布了新的文献求助10
7秒前
朱江涛完成签到 ,获得积分10
8秒前
角鸮完成签到,获得积分10
8秒前
zly完成签到 ,获得积分10
9秒前
雨霧雲完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808