Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis

扩展卡尔曼滤波器 卡尔曼滤波器 荷电状态 电池(电) 计算机科学 控制理论(社会学) 工程类 人工智能 功率(物理) 物理 控制(管理) 量子力学
作者
Monowar Hossain,Md Enamul Haque,Mohammad Taufiqul Arif
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:51: 104174-104174 被引量:140
标识
DOI:10.1016/j.est.2022.104174
摘要

The state of charge (SoC) is the most commonly used performance indicator of battery used in various applications. A chronic erroneous estimation of battery SoC may result in constant over charging and discharging, which in turn causes permanent damage to the internal structure of the battery cells along with system disruptions. This paper presents a comprehensive review of different techniques for SoC estimation of batteries, followed by a review of Li-ion battery model parameter estimation methods. Then this paper classifies the Kalman filters (KFs) in a systematic manner and conducts a detailed literature review on the linear Kalman filter (LKF) and non-linear Kalman filters (NLKFs). In recent literature, the NLKFs such as extended Kalman filter (EKF), adaptive EKF (AEKF), unscented Kalman filter (UKF), and adaptive UKF (AUKF) are the most extensively established techniques for an accurate and reliable SoC estimation of batteries. However, the precise estimation of battery SoC using the Kalman filters largely relies on accurate battery modeling and its online model parameter estimation. According to the literature, the recursive least square (RLS) and the polynomial regression-based battery model (PRBM) are the most often used techniques for estimating real-time model parameters of Li-ion batteries. Therefore, this paper performs an experimental comparative performance evaluation of the most popularly used NLKFS and battery modeling techniques in terms of SoC estimation accuracy at constant and varying operating conditions. The EKF, AEKF, UKF, and AUKF techniques augmented with the popularly used RLS or PRBM are first developed and tested with offline measured data in the MATLAB platform. Then they are implemented on the LabVIEW based battery testing platform using the Math-Script feature of MATLAB for real-time parameters and SoC estimation. Rigorous experimental studies have been carried out for comparative performance evaluation of the PRBM-EKF, PRBM-AEKF, PRBM-UKF, PRBM-AUKF, RLS-EKF, RLS-AEKF, RLS-UKF, and RLS-AUKF techniques under the standard room temperature (25 °C) and a wide temperature range (−5 °C to 45 °C). Overall, the PRBM-AUKF and RLS-AUKF surpassed other approaches in terms of SoC estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuhanghang发布了新的文献求助10
1秒前
WTX完成签到,获得积分0
1秒前
qhjqljqd发布了新的文献求助10
1秒前
彻底的发布了新的文献求助10
1秒前
WZH完成签到 ,获得积分10
1秒前
2秒前
2秒前
清图完成签到,获得积分10
3秒前
汉堡包应助WeiBao采纳,获得10
4秒前
渴望者发布了新的文献求助10
4秒前
星星完成签到,获得积分10
4秒前
Shyne完成签到 ,获得积分10
5秒前
kai_完成签到,获得积分10
5秒前
酷炫甜瓜完成签到,获得积分10
6秒前
6秒前
康康完成签到,获得积分10
7秒前
勤劳傲安完成签到,获得积分10
8秒前
louis dai完成签到,获得积分10
8秒前
aaaaaa发布了新的文献求助10
8秒前
花生完成签到 ,获得积分10
9秒前
DYLAN_ZZ完成签到,获得积分10
9秒前
ShuY完成签到,获得积分10
10秒前
一朵云完成签到,获得积分10
11秒前
11秒前
研友_ZegMrL完成签到,获得积分10
11秒前
Elanie完成签到,获得积分10
12秒前
小白杨完成签到,获得积分10
12秒前
卫卫完成签到 ,获得积分10
12秒前
12秒前
Hello应助aaaaaa采纳,获得10
12秒前
fujiaxing发布了新的文献求助10
13秒前
积极的帽子完成签到 ,获得积分10
13秒前
欣喜书桃完成签到,获得积分10
13秒前
ttlash完成签到,获得积分10
14秒前
Mr.Su完成签到 ,获得积分10
14秒前
背后的小白菜完成签到,获得积分10
14秒前
洁净的士晋完成签到,获得积分10
15秒前
15秒前
苹果初阳发布了新的文献求助10
15秒前
清欢完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968603
求助须知:如何正确求助?哪些是违规求助? 3513420
关于积分的说明 11168029
捐赠科研通 3248900
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875187
科研通“疑难数据库(出版商)”最低求助积分说明 804676