亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis

扩展卡尔曼滤波器 卡尔曼滤波器 荷电状态 电池(电) 计算机科学 控制理论(社会学) 工程类 人工智能 功率(物理) 物理 控制(管理) 量子力学
作者
Monowar Hossain,Md Enamul Haque,Mohammad Taufiqul Arif
出处
期刊:Journal of energy storage [Elsevier]
卷期号:51: 104174-104174 被引量:157
标识
DOI:10.1016/j.est.2022.104174
摘要

The state of charge (SoC) is the most commonly used performance indicator of battery used in various applications. A chronic erroneous estimation of battery SoC may result in constant over charging and discharging, which in turn causes permanent damage to the internal structure of the battery cells along with system disruptions. This paper presents a comprehensive review of different techniques for SoC estimation of batteries, followed by a review of Li-ion battery model parameter estimation methods. Then this paper classifies the Kalman filters (KFs) in a systematic manner and conducts a detailed literature review on the linear Kalman filter (LKF) and non-linear Kalman filters (NLKFs). In recent literature, the NLKFs such as extended Kalman filter (EKF), adaptive EKF (AEKF), unscented Kalman filter (UKF), and adaptive UKF (AUKF) are the most extensively established techniques for an accurate and reliable SoC estimation of batteries. However, the precise estimation of battery SoC using the Kalman filters largely relies on accurate battery modeling and its online model parameter estimation. According to the literature, the recursive least square (RLS) and the polynomial regression-based battery model (PRBM) are the most often used techniques for estimating real-time model parameters of Li-ion batteries. Therefore, this paper performs an experimental comparative performance evaluation of the most popularly used NLKFS and battery modeling techniques in terms of SoC estimation accuracy at constant and varying operating conditions. The EKF, AEKF, UKF, and AUKF techniques augmented with the popularly used RLS or PRBM are first developed and tested with offline measured data in the MATLAB platform. Then they are implemented on the LabVIEW based battery testing platform using the Math-Script feature of MATLAB for real-time parameters and SoC estimation. Rigorous experimental studies have been carried out for comparative performance evaluation of the PRBM-EKF, PRBM-AEKF, PRBM-UKF, PRBM-AUKF, RLS-EKF, RLS-AEKF, RLS-UKF, and RLS-AUKF techniques under the standard room temperature (25 °C) and a wide temperature range (−5 °C to 45 °C). Overall, the PRBM-AUKF and RLS-AUKF surpassed other approaches in terms of SoC estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
把饭拼好给你完成签到 ,获得积分10
6秒前
16秒前
24秒前
哲别发布了新的文献求助10
27秒前
28秒前
阿兹卡班完成签到 ,获得积分10
28秒前
28秒前
31秒前
怂宝儿发布了新的文献求助10
32秒前
虚拟的画板完成签到 ,获得积分10
33秒前
Joeswith发布了新的文献求助10
38秒前
1233445完成签到,获得积分10
40秒前
小鱼完成签到 ,获得积分10
44秒前
48秒前
完美世界应助科研通管家采纳,获得10
49秒前
Muhammad发布了新的文献求助10
52秒前
Ree发布了新的文献求助30
1分钟前
Akim应助赣南橙采纳,获得10
1分钟前
科研通AI6应助Ree采纳,获得10
1分钟前
陆康完成签到 ,获得积分10
1分钟前
1分钟前
充电宝应助艺玲采纳,获得10
1分钟前
Muhammad发布了新的文献求助10
1分钟前
maher完成签到,获得积分10
1分钟前
1分钟前
1分钟前
艺玲发布了新的文献求助10
1分钟前
赣南橙发布了新的文献求助10
1分钟前
1分钟前
Muhammad发布了新的文献求助10
1分钟前
2分钟前
烂漫的绿茶完成签到 ,获得积分10
2分钟前
2分钟前
赣南橙完成签到,获得积分10
2分钟前
雨相所至发布了新的文献求助10
2分钟前
光亮梦松发布了新的文献求助10
2分钟前
雨相所至完成签到,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
苹果颖发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554741
求助须知:如何正确求助?哪些是违规求助? 4639342
关于积分的说明 14656067
捐赠科研通 4581239
什么是DOI,文献DOI怎么找? 2512662
邀请新用户注册赠送积分活动 1487403
关于科研通互助平台的介绍 1458322