Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis

扩展卡尔曼滤波器 卡尔曼滤波器 荷电状态 电池(电) 计算机科学 控制理论(社会学) 工程类 人工智能 功率(物理) 物理 控制(管理) 量子力学
作者
Monowar Hossain,Md Enamul Haque,Mohammad Taufiqul Arif
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:51: 104174-104174 被引量:140
标识
DOI:10.1016/j.est.2022.104174
摘要

The state of charge (SoC) is the most commonly used performance indicator of battery used in various applications. A chronic erroneous estimation of battery SoC may result in constant over charging and discharging, which in turn causes permanent damage to the internal structure of the battery cells along with system disruptions. This paper presents a comprehensive review of different techniques for SoC estimation of batteries, followed by a review of Li-ion battery model parameter estimation methods. Then this paper classifies the Kalman filters (KFs) in a systematic manner and conducts a detailed literature review on the linear Kalman filter (LKF) and non-linear Kalman filters (NLKFs). In recent literature, the NLKFs such as extended Kalman filter (EKF), adaptive EKF (AEKF), unscented Kalman filter (UKF), and adaptive UKF (AUKF) are the most extensively established techniques for an accurate and reliable SoC estimation of batteries. However, the precise estimation of battery SoC using the Kalman filters largely relies on accurate battery modeling and its online model parameter estimation. According to the literature, the recursive least square (RLS) and the polynomial regression-based battery model (PRBM) are the most often used techniques for estimating real-time model parameters of Li-ion batteries. Therefore, this paper performs an experimental comparative performance evaluation of the most popularly used NLKFS and battery modeling techniques in terms of SoC estimation accuracy at constant and varying operating conditions. The EKF, AEKF, UKF, and AUKF techniques augmented with the popularly used RLS or PRBM are first developed and tested with offline measured data in the MATLAB platform. Then they are implemented on the LabVIEW based battery testing platform using the Math-Script feature of MATLAB for real-time parameters and SoC estimation. Rigorous experimental studies have been carried out for comparative performance evaluation of the PRBM-EKF, PRBM-AEKF, PRBM-UKF, PRBM-AUKF, RLS-EKF, RLS-AEKF, RLS-UKF, and RLS-AUKF techniques under the standard room temperature (25 °C) and a wide temperature range (−5 °C to 45 °C). Overall, the PRBM-AUKF and RLS-AUKF surpassed other approaches in terms of SoC estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alanbike完成签到,获得积分10
1秒前
哈基米德应助丽丽采纳,获得20
2秒前
隐形曼青应助able采纳,获得10
7秒前
咸鱼已躺平完成签到,获得积分10
9秒前
诡异的饭团完成签到,获得积分10
10秒前
anan完成签到 ,获得积分10
11秒前
常绝山完成签到 ,获得积分10
11秒前
幽默皮皮虾完成签到,获得积分10
11秒前
易止完成签到 ,获得积分10
11秒前
just完成签到,获得积分10
12秒前
14秒前
Disguise完成签到,获得积分10
14秒前
Young4399完成签到 ,获得积分10
14秒前
火星上宛秋完成签到 ,获得积分10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
szh123完成签到 ,获得积分10
16秒前
Luke发布了新的文献求助10
18秒前
mauve完成签到 ,获得积分10
18秒前
丽丽完成签到,获得积分10
22秒前
敏感笑槐完成签到 ,获得积分10
23秒前
Luke完成签到,获得积分10
23秒前
得鹿梦鱼完成签到,获得积分10
24秒前
嗝嗝完成签到,获得积分10
26秒前
Perry应助科研通管家采纳,获得30
26秒前
26秒前
今后应助水晶茶杯采纳,获得10
26秒前
peterlzb1234567完成签到,获得积分10
28秒前
natsu401完成签到 ,获得积分10
31秒前
mmddlj完成签到 ,获得积分10
31秒前
健康的雁凡完成签到,获得积分10
31秒前
稳重完成签到 ,获得积分10
33秒前
36秒前
haiqi完成签到,获得积分20
40秒前
白智妍发布了新的文献求助10
41秒前
王叮叮完成签到,获得积分10
42秒前
jeronimo完成签到,获得积分10
43秒前
43秒前
pcr163应助大橙子采纳,获得150
46秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022