Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis

扩展卡尔曼滤波器 卡尔曼滤波器 荷电状态 电池(电) 计算机科学 控制理论(社会学) 工程类 算法 人工智能 功率(物理) 物理 控制(管理) 量子力学
作者
Monowar Hossain,M. E. Haque,Mohammad Taufiqul Arif
出处
期刊:Journal of energy storage [Elsevier]
卷期号:51: 104174-104174 被引量:96
标识
DOI:10.1016/j.est.2022.104174
摘要

The state of charge (SoC) is the most commonly used performance indicator of battery used in various applications. A chronic erroneous estimation of battery SoC may result in constant over charging and discharging, which in turn causes permanent damage to the internal structure of the battery cells along with system disruptions. This paper presents a comprehensive review of different techniques for SoC estimation of batteries, followed by a review of Li-ion battery model parameter estimation methods. Then this paper classifies the Kalman filters (KFs) in a systematic manner and conducts a detailed literature review on the linear Kalman filter (LKF) and non-linear Kalman filters (NLKFs). In recent literature, the NLKFs such as extended Kalman filter (EKF), adaptive EKF (AEKF), unscented Kalman filter (UKF), and adaptive UKF (AUKF) are the most extensively established techniques for an accurate and reliable SoC estimation of batteries. However, the precise estimation of battery SoC using the Kalman filters largely relies on accurate battery modeling and its online model parameter estimation. According to the literature, the recursive least square (RLS) and the polynomial regression-based battery model (PRBM) are the most often used techniques for estimating real-time model parameters of Li-ion batteries. Therefore, this paper performs an experimental comparative performance evaluation of the most popularly used NLKFS and battery modeling techniques in terms of SoC estimation accuracy at constant and varying operating conditions. The EKF, AEKF, UKF, and AUKF techniques augmented with the popularly used RLS or PRBM are first developed and tested with offline measured data in the MATLAB platform. Then they are implemented on the LabVIEW based battery testing platform using the Math-Script feature of MATLAB for real-time parameters and SoC estimation. Rigorous experimental studies have been carried out for comparative performance evaluation of the PRBM-EKF, PRBM-AEKF, PRBM-UKF, PRBM-AUKF, RLS-EKF, RLS-AEKF, RLS-UKF, and RLS-AUKF techniques under the standard room temperature (25 °C) and a wide temperature range (−5 °C to 45 °C). Overall, the PRBM-AUKF and RLS-AUKF surpassed other approaches in terms of SoC estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助李喜喜采纳,获得10
1秒前
Peggy发布了新的文献求助50
2秒前
3秒前
3秒前
xianxian发布了新的文献求助10
3秒前
wjx1415发布了新的文献求助10
3秒前
美满凌瑶完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
6秒前
大胆妖孽完成签到,获得积分10
6秒前
科通研AI完成签到,获得积分10
6秒前
爱科研发布了新的文献求助10
6秒前
丰富以亦完成签到,获得积分10
6秒前
动人的姝完成签到 ,获得积分10
6秒前
小夏饭桶应助俊逸的紊采纳,获得10
6秒前
大乐发布了新的文献求助10
6秒前
CipherSage应助zxf采纳,获得10
7秒前
7秒前
7秒前
美满凌瑶发布了新的文献求助10
8秒前
67way发布了新的文献求助10
9秒前
花花不花发布了新的文献求助10
9秒前
Sir.夏季风发布了新的文献求助10
9秒前
柏柳发布了新的文献求助10
10秒前
10秒前
善学以致用应助Felicity采纳,获得10
11秒前
11秒前
aa发布了新的文献求助10
11秒前
轻松的谷兰完成签到,获得积分20
11秒前
奋斗的猪发布了新的文献求助10
12秒前
--发布了新的文献求助10
12秒前
13秒前
优秀的蜗牛完成签到,获得积分10
13秒前
13秒前
pumpkin发布了新的文献求助10
15秒前
发现发布了新的文献求助30
15秒前
不lex2之完成签到,获得积分20
15秒前
16秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218864
求助须知:如何正确求助?哪些是违规求助? 2867866
关于积分的说明 8158618
捐赠科研通 2534991
什么是DOI,文献DOI怎么找? 1367348
科研通“疑难数据库(出版商)”最低求助积分说明 645033
邀请新用户注册赠送积分活动 618203