Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis

扩展卡尔曼滤波器 卡尔曼滤波器 荷电状态 电池(电) 计算机科学 控制理论(社会学) 工程类 人工智能 功率(物理) 物理 控制(管理) 量子力学
作者
Monowar Hossain,Md Enamul Haque,Mohammad Taufiqul Arif
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:51: 104174-104174 被引量:140
标识
DOI:10.1016/j.est.2022.104174
摘要

The state of charge (SoC) is the most commonly used performance indicator of battery used in various applications. A chronic erroneous estimation of battery SoC may result in constant over charging and discharging, which in turn causes permanent damage to the internal structure of the battery cells along with system disruptions. This paper presents a comprehensive review of different techniques for SoC estimation of batteries, followed by a review of Li-ion battery model parameter estimation methods. Then this paper classifies the Kalman filters (KFs) in a systematic manner and conducts a detailed literature review on the linear Kalman filter (LKF) and non-linear Kalman filters (NLKFs). In recent literature, the NLKFs such as extended Kalman filter (EKF), adaptive EKF (AEKF), unscented Kalman filter (UKF), and adaptive UKF (AUKF) are the most extensively established techniques for an accurate and reliable SoC estimation of batteries. However, the precise estimation of battery SoC using the Kalman filters largely relies on accurate battery modeling and its online model parameter estimation. According to the literature, the recursive least square (RLS) and the polynomial regression-based battery model (PRBM) are the most often used techniques for estimating real-time model parameters of Li-ion batteries. Therefore, this paper performs an experimental comparative performance evaluation of the most popularly used NLKFS and battery modeling techniques in terms of SoC estimation accuracy at constant and varying operating conditions. The EKF, AEKF, UKF, and AUKF techniques augmented with the popularly used RLS or PRBM are first developed and tested with offline measured data in the MATLAB platform. Then they are implemented on the LabVIEW based battery testing platform using the Math-Script feature of MATLAB for real-time parameters and SoC estimation. Rigorous experimental studies have been carried out for comparative performance evaluation of the PRBM-EKF, PRBM-AEKF, PRBM-UKF, PRBM-AUKF, RLS-EKF, RLS-AEKF, RLS-UKF, and RLS-AUKF techniques under the standard room temperature (25 °C) and a wide temperature range (−5 °C to 45 °C). Overall, the PRBM-AUKF and RLS-AUKF surpassed other approaches in terms of SoC estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊发布了新的文献求助10
2秒前
余小琴完成签到 ,获得积分10
2秒前
Solar energy发布了新的文献求助10
2秒前
3秒前
叶子完成签到,获得积分10
7秒前
大模型应助好远加身采纳,获得10
8秒前
9秒前
万能图书馆应助吱吱采纳,获得10
10秒前
liyanping完成签到,获得积分20
10秒前
Harry完成签到,获得积分10
10秒前
Cq完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
eric888应助ziming313采纳,获得200
14秒前
搜集达人应助cc采纳,获得10
15秒前
傅寻菱发布了新的文献求助10
15秒前
Lucas应助Cq采纳,获得10
16秒前
liyanping发布了新的文献求助10
16秒前
李文霄完成签到 ,获得积分10
17秒前
刘无敌发布了新的文献求助10
17秒前
都好都好好的完成签到,获得积分20
17秒前
汉堡包应助我大哥爱吃采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
无花果应助白桃味的夏采纳,获得10
20秒前
乱世完成签到,获得积分10
21秒前
笑笑完成签到 ,获得积分10
24秒前
25秒前
25秒前
28秒前
28秒前
魔真人完成签到,获得积分10
28秒前
咕咕咕完成签到,获得积分10
29秒前
梨梨梨发布了新的文献求助10
29秒前
29秒前
CodeCraft应助刘无敌采纳,获得10
29秒前
领导范儿应助cruise采纳,获得10
31秒前
31秒前
彭于晏应助Dyson采纳,获得30
32秒前
高高从霜完成签到 ,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975693
求助须知:如何正确求助?哪些是违规求助? 3520019
关于积分的说明 11200635
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798255
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390