MLDRL: Multi-loss disentangled representation learning for predicting esophageal cancer response to neoadjuvant chemoradiotherapy using longitudinal CT images

规范化(社会学) 计算机科学 人工智能 模式识别(心理学) 融合 特征学习 语言学 哲学 社会学 人类学
作者
Hailin Yue,Jin Liu,Junjian Li,Hulin Kuang,Jinyi Lang,Jianhong Cheng,Lin Peng,Yongtao Han,Harrison X. Bai,Yu‐Ping Wang,Qifeng Wang,Jianxin Wang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102423-102423 被引量:21
标识
DOI:10.1016/j.media.2022.102423
摘要

Accurate prediction of pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) is essential for clinical precision treatment. However, the existing methods of predicting pCR in esophageal cancer are based on the single stage data, which limits the performance of these methods. Effective fusion of the longitudinal data has the potential to improve the performance of pCR prediction, thanks to the combination of complementary information. In this study, we propose a new multi-loss disentangled representation learning (MLDRL) to realize the effective fusion of complementary information in the longitudinal data. Specifically, we first disentangle the latent variables of features in each stage into inherent and variational components. Then, we define a multi-loss function to ensure the effectiveness and structure of disentanglement, which consists of a cross-cycle reconstruction loss, an inherent-variational loss and a supervised classification loss. Finally, an adaptive gradient normalization algorithm is applied to balance the training of multiple loss terms by dynamically tuning the gradient magnitudes. Due to the cooperation of the multi-loss function and the adaptive gradient normalization algorithm, MLDRL effectively restrains the potential interference and achieves effective information fusion. The proposed method is evaluated on multi-center datasets, and the experimental results show that our method not only outperforms several state-of-art methods in pCR prediction, but also achieves better performance in the prognostic analysis of multi-center unlabeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Eves关注了科研通微信公众号
6秒前
kittykitten完成签到 ,获得积分10
7秒前
9秒前
糊涂的勒完成签到,获得积分10
10秒前
11秒前
子衿发布了新的文献求助10
11秒前
心随以动发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
超级的鹅完成签到,获得积分10
15秒前
gzy780819发布了新的文献求助10
15秒前
15秒前
XIXI完成签到,获得积分20
16秒前
16秒前
毛豆爸爸应助violetyjm采纳,获得20
18秒前
18秒前
18秒前
18秒前
He发布了新的文献求助10
19秒前
19秒前
子铭完成签到,获得积分10
19秒前
Owen应助马某某某某某采纳,获得10
20秒前
song发布了新的文献求助10
21秒前
布丁完成签到 ,获得积分10
23秒前
23秒前
23秒前
XIE发布了新的文献求助50
24秒前
zz发布了新的文献求助10
25秒前
毛豆爸爸应助violetyjm采纳,获得20
26秒前
李朝富发布了新的文献求助10
26秒前
心随以动发布了新的文献求助10
26秒前
27秒前
Cao完成签到 ,获得积分10
28秒前
genomed应助愫问采纳,获得20
29秒前
郑岩狭完成签到 ,获得积分10
29秒前
优雅雁菱完成签到,获得积分10
29秒前
30秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102