富营养化
环境科学
肥料
磷
牲畜
营养物
农业
降水
人口
非点源污染
污染
水文学(农业)
生态学
地理
生物
化学
地质学
气象学
人口学
岩土工程
有机化学
社会学
作者
Jie Liu,Wenquan Gu,Yawen Liu,Chi Zhang,Wenhui Li,Dongguo Shao
标识
DOI:10.1016/j.scitotenv.2022.155287
摘要
The increase of phosphorus (P) input related to human activities is one of the main reasons for eutrophication. Notably, in areas with high population densities and intensive agricultural activities, eutrophication has occurred frequently in the Jianghan Plain, so quantitative evaluation of anthropogenic P input is of great significance for the formulation of P pollution control measures. This study estimated net anthropogenic P input (NAPI), riverine total P exports (TP exports), and the pool of P stored in the terrestrial system (legacy P reserves) at the county scale from 1990 to 2019 in the Jianghan Plain. The results showed that NAPI increased from 2645 kg·km-2·yr-1 in 1991 to 5812 kg·km-2·yr-1 in 2014, and then decreased to 4509 kg·km-2·yr-1 in 2019. Non-point sources were the main form of NAPI, of which 75-96% came from agricultural systems. Meanwhile, P fertilizer input was the largest source of NAPI. It is worth noting that the contribution of seed P input in some counties, such as Jiangling County, is relatively high, even exceeding that of net food/feed P input. The P fertilizer application and livestock density were the main drivers for NAPI change. Only 3% of NAPI was exported into rivers, so a large amount of legacy P accumulated in the terrestrial system. An empirical model incorporating NAPI components, cultivated land area ratio, and annual precipitation was established. Based on this model, the average contribution of annual NAPI and the sum of legacy P and natural background sources to TP exports were calculated to be 71% and 29%, respectively. So it is necessary to control P pollution by improving fertilizer use efficiency and enhancing manure management. The results provide a scientific basis for targeted solutions to the sources of P nutrient and its control measures in the middle reach of the Yangtze River.
科研通智能强力驱动
Strongly Powered by AbleSci AI