Development of transferable neighborhood land use regression models for predicting intra-urban ambient nitrogen dioxide (NO2) spatial variations

可转让性 可解释性 环境科学 比例(比率) 空气污染 回归分析 计量经济学 预测建模 预测能力 线性回归 统计 计算机科学
作者
Xuying Ma,Jay Gao,Ian Longley,Bin Zou,Bin Guo,Xin Xu,Jennifer Salmond
出处
期刊:Environmental Science and Pollution Research [Springer Science+Business Media]
标识
DOI:10.1007/s11356-022-19141-x
摘要

Land use regression (LUR) models have been extensively used to predict air pollution exposure in epidemiological and environmental studies. The lack of dense routine monitoring networks in big cities places increased emphasis on the need for LUR models to be developed using purpose-designed neighborhood-scale monitoring data. However, the unsatisfactory model transferability limits these neighborhood LUR models to be then applied to other intra-urban areas in predicting air pollution exposure. In this study, we tackled this issue by proposing a method to develop transferable neighborhood NO2 LUR models with comparable predictive power based on only micro-scale predictor variables for modeling intra-urban ambient air pollution exposure. Taking Auckland metropolis, New Zealand, as a case study, the proposed method was applied to three neighborhoods (urban, central business district, and dominion road) and compared with the corresponding counterpart models developed using pools of (a) only macro-scale predictor variables and (b) a mixture of both micro- and macro-scale predictor variables (traditional method). The results showed that the models using only macro-scale variables achieved the lowest accuracy (R2: 0.388-0.484) and had the worst direct (R2: 0.0001-0.349) and indirect transferability (R2: 0.07-0.352). Those models using the traditional method had the highest model fitting R2 (0.629-0.966) with lower cross-validation R2 (0.495-0.941) and slightly better direct transferability (R2: 0.0003-0.386) but suffered poor model interpretability when indirectly transferred to new locations. Our proposed models had comparable model fitting R2 (0.601-0.966) and the best cross-validation R2 (0.514-0.941). They also had the strongest direct transferability (R2: 0.006-0.590) and moderate-to-good indirect transferability (R2: 0.072-0.850) with much better model interpretability. This study advances our knowledge of developing transferable LUR models for the very first time from the perspective of the scale of the predictor variables used in the model development and will significantly benefit the wider application of LUR approaches in epidemiological and environmental studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助zdy采纳,获得10
3秒前
CHyaa完成签到,获得积分10
3秒前
开放夜南完成签到,获得积分10
5秒前
乐乐应助仟惠采纳,获得10
5秒前
冷傲山彤发布了新的文献求助10
5秒前
wsb76发布了新的文献求助10
6秒前
Hello应助张础锐采纳,获得10
6秒前
张城豪发布了新的文献求助10
6秒前
6秒前
Lori完成签到,获得积分10
7秒前
西木完成签到,获得积分10
10秒前
学术底层完成签到,获得积分10
10秒前
香蕉谷芹完成签到,获得积分10
11秒前
贪玩怀寒发布了新的文献求助10
11秒前
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助狂飙的蛋采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
难过的秋柳完成签到 ,获得积分10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
14秒前
大模型应助科研通管家采纳,获得10
14秒前
劲秉应助科研通管家采纳,获得20
14秒前
14秒前
14秒前
14秒前
wanci应助懒羊羊采纳,获得10
15秒前
orixero应助亦辰采纳,获得10
15秒前
英俊的铭应助贪玩怀寒采纳,获得10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882