Prediction of depressive symptoms onset and long-term trajectories in home-based older adults using machine learning techniques

接收机工作特性 萧条(经济学) 纵向研究 潜在增长模型 抑郁症状 公制(单位) 老人忧郁量表 医学 机器学习 人工智能 心理学 认知 老年学 精神科 计算机科学 经济 病理 宏观经济学 运营管理
作者
Shaowu Lin,Yafei Wu,Lingxiao He,Ya Fang
出处
期刊:Aging & Mental Health [Routledge]
卷期号:27 (1): 8-17 被引量:22
标识
DOI:10.1080/13607863.2022.2031868
摘要

Objectives Our aim was to explore the possibility of using machine learning (ML) in predicting the onset and trajectories of depressive symptom in home-based older adults over a 7-year period.Methods Depressive symptom data (collected in the year 2011, 2013, 2015 and 2018) of home-based older Chinese (n = 2650) recruited in the China Health and Retirement Longitudinal Study (CHARLS) were included in the current analysis. The latent class growth modeling (LCGM) and growth mixture modeling (GMM) were used to classify different trajectory classes. Based on the identified trajectory patterns, three ML classification algorithms (i.e. gradient boosting decision tree, support vector machine and random forest) were evaluated with a 10-fold cross-validation procedure and a metric of the area under the receiver operating characteristic curve (AUC).Results Four trajectories were identified for the depressive symptoms: no symptoms (63.9%), depressive symptoms onset {incident increasing symptoms [new-onset increasing (16.8%)], chronic symptoms [slowly decreasing (12.5%), persistent high (6.8%)]}. Among the analyzed baseline variables, the 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) score, cognition, sleep time, self-reported memory were the top five important predictors across all trajectories. The mean AUCs of the three predictive models had a range from 0.661 to 0.892.Conclusions ML techniques can be robust in predicting depressive symptom onset and trajectories over a 7-year period with easily accessible sociodemographic and health information.Supplemental data for this article is available online at http://dx.doi.org/10.1080/13607863.2022.2031868
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
走走发布了新的文献求助10
刚刚
刚刚
科研通AI5应助红叶再开采纳,获得20
1秒前
昱旻发布了新的文献求助10
1秒前
科研通AI6应助呆胶布采纳,获得10
1秒前
事事顺利发布了新的文献求助10
2秒前
Ws发布了新的文献求助10
2秒前
2秒前
个性的紫菜应助SAVP采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
无花果应助眯眯眼的老五采纳,获得10
4秒前
隐形曼青应助popo采纳,获得10
4秒前
WLWLW应助Cordero采纳,获得30
4秒前
5秒前
刘大年完成签到,获得积分10
5秒前
苏西完成签到,获得积分10
5秒前
机灵道之完成签到,获得积分10
5秒前
科研通AI6应助sky同学采纳,获得10
6秒前
6秒前
7秒前
lucky完成签到 ,获得积分10
7秒前
Orange应助繁笙采纳,获得10
8秒前
8秒前
小马甲应助大意的飞莲采纳,获得10
9秒前
希望天下0贩的0应助PPD采纳,获得10
9秒前
9秒前
9秒前
toki完成签到,获得积分10
9秒前
浩气长存完成签到 ,获得积分10
10秒前
红岚幽客发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
勤恳的小馒头完成签到,获得积分10
12秒前
12秒前
12秒前
1b完成签到,获得积分10
12秒前
小水滴完成签到,获得积分20
12秒前
shujing完成签到 ,获得积分10
12秒前
王哪跑12发布了新的文献求助10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482