Prediction of depressive symptoms onset and long-term trajectories in home-based older adults using machine learning techniques

接收机工作特性 萧条(经济学) 纵向研究 潜在增长模型 抑郁症状 公制(单位) 老人忧郁量表 医学 机器学习 人工智能 心理学 认知 老年学 精神科 计算机科学 经济 病理 宏观经济学 运营管理
作者
Shaowu Lin,Yafei Wu,Lingxiao He,Ya Fang
出处
期刊:Aging & Mental Health [Informa]
卷期号:27 (1): 8-17 被引量:25
标识
DOI:10.1080/13607863.2022.2031868
摘要

Objectives Our aim was to explore the possibility of using machine learning (ML) in predicting the onset and trajectories of depressive symptom in home-based older adults over a 7-year period.Methods Depressive symptom data (collected in the year 2011, 2013, 2015 and 2018) of home-based older Chinese (n = 2650) recruited in the China Health and Retirement Longitudinal Study (CHARLS) were included in the current analysis. The latent class growth modeling (LCGM) and growth mixture modeling (GMM) were used to classify different trajectory classes. Based on the identified trajectory patterns, three ML classification algorithms (i.e. gradient boosting decision tree, support vector machine and random forest) were evaluated with a 10-fold cross-validation procedure and a metric of the area under the receiver operating characteristic curve (AUC).Results Four trajectories were identified for the depressive symptoms: no symptoms (63.9%), depressive symptoms onset {incident increasing symptoms [new-onset increasing (16.8%)], chronic symptoms [slowly decreasing (12.5%), persistent high (6.8%)]}. Among the analyzed baseline variables, the 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) score, cognition, sleep time, self-reported memory were the top five important predictors across all trajectories. The mean AUCs of the three predictive models had a range from 0.661 to 0.892.Conclusions ML techniques can be robust in predicting depressive symptom onset and trajectories over a 7-year period with easily accessible sociodemographic and health information.Supplemental data for this article is available online at http://dx.doi.org/10.1080/13607863.2022.2031868
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
付辛博boo完成签到,获得积分10
刚刚
CarolineOY发布了新的文献求助10
刚刚
伪电气白兰完成签到,获得积分10
1秒前
wwddd发布了新的文献求助10
1秒前
852应助大大怪采纳,获得10
2秒前
3秒前
orixero应助可达燊采纳,获得10
3秒前
Owen应助文艺鞋子采纳,获得10
4秒前
十丶年完成签到,获得积分10
4秒前
模拟计算0368完成签到,获得积分10
5秒前
所所应助nuth采纳,获得10
5秒前
7秒前
victor完成签到,获得积分10
7秒前
盆鱼艳完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
清爽秋白发布了新的文献求助10
10秒前
朴实的访烟完成签到 ,获得积分10
11秒前
12秒前
高有财完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
默默的誉发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
清爽秋白完成签到,获得积分20
19秒前
净心发布了新的文献求助10
19秒前
shhoing应助羽渡尘采纳,获得10
20秒前
20秒前
可达燊发布了新的文献求助10
21秒前
Cx完成签到,获得积分10
21秒前
lilili发布了新的文献求助10
22秒前
黄则已发布了新的文献求助10
23秒前
qvb完成签到 ,获得积分10
23秒前
23秒前
共享精神应助积极的老鼠采纳,获得10
24秒前
24秒前
完美世界应助Aintzane采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537346
求助须知:如何正确求助?哪些是违规求助? 4624899
关于积分的说明 14593747
捐赠科研通 4565427
什么是DOI,文献DOI怎么找? 2502354
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452191