Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables

医学 淋巴血管侵犯 逻辑回归 阿达布思 人工智能 无线电技术 放射科 线性判别分析 癌症 内科学 转移 支持向量机 计算机科学
作者
Lijing Fan,Jing Li,Huiling Zhang,Hongkun Yin,Rongguo Zhang,Jibin Zhang,Xuejun Chen
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:47 (4): 1209-1222 被引量:33
标识
DOI:10.1007/s00261-021-03315-1
摘要

Lymphovascular invasion (LVI) is associated with metastasis and poor survival in patients with gastric cancer, yet the noninvasive diagnosis of LVI is difficult. This study aims to develop predictive models using different machine learning (ML) classifiers based on both enhanced CT and PET/CT images and clinical variables for preoperatively predicting lymphovascular invasion (LVI) status of gastric cancer.A total of 101 patients with gastric cancer who underwent surgery were retrospectively recruited, and the LVI status was confirmed by pathological analysis. Patients were randomly divided into a training dataset (n = 76) and a validation dataset (n = 25). By 3D manual segmentation, radiomics features were extracted from the PET and venous phase CT images. Image models, clinical models, and combined models were constructed by selected enhanced CT-based and PET-based radiomics features, clinical factors, and a combination of both, respectively. Three ML classifiers including adaptive boosting (AdaBoost), linear discriminant analysis (LDA), and logistic regression (LR) were used for model development. The performance of these predictive models was evaluated with respect to discrimination, calibration, and clinical usefulness.Ten radiomics features and eight clinical factors were selected for the development of predictive models. In the validation dataset, the area under curve (AUC) values of clinical models using AdaBoost, LDA, and LR classifiers were 0.742, 0.706, and 0.690, respectively. The image models using AdaBoost, LDA, and LR classifiers achieved an AUC of 0.849, 0.778, and 0.810, respectively. The combined models showed improved performance than the image models and the clinical models, with the AUC values of AdaBoost, LDA, and LR classifier yielding 0.944, 0.929, and 0.921, respectively. The combined models also showed good calibration and clinical usefulness for LVI prediction.ML-based models integrating PET/CT and enhanced CT radiomics features and clinical factors have good discrimination capability, which could serve as a noninvasive, preoperative tool for the prediction of LVI and assist surgical treatment decisions in patients with gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐进发布了新的文献求助10
2秒前
jiaolulu发布了新的文献求助10
2秒前
乐观银耳汤完成签到,获得积分10
3秒前
WJing完成签到,获得积分10
3秒前
lenetivy发布了新的文献求助20
3秒前
5秒前
linhanwenzhou发布了新的文献求助10
7秒前
yyy完成签到 ,获得积分10
7秒前
幽默的煎饼完成签到,获得积分10
7秒前
8秒前
搞怪不斜完成签到,获得积分10
8秒前
8秒前
xinxiangshicheng完成签到 ,获得积分10
9秒前
愤怒的小鸟完成签到,获得积分10
9秒前
MY完成签到,获得积分10
9秒前
顾矜应助lenetivy采纳,获得10
10秒前
自觉寒梦发布了新的文献求助10
10秒前
美好斓发布了新的文献求助10
10秒前
郑文涛完成签到,获得积分10
11秒前
JamesPei应助专注的白柏采纳,获得10
12秒前
YHY发布了新的文献求助10
14秒前
好吃发布了新的文献求助10
14秒前
拾光完成签到,获得积分10
15秒前
long完成签到 ,获得积分10
15秒前
天天向上发布了新的文献求助10
16秒前
6260完成签到,获得积分10
16秒前
pcr163应助linhanwenzhou采纳,获得50
17秒前
17秒前
酷酷元风完成签到,获得积分10
18秒前
19秒前
天才幸运鱼完成签到,获得积分10
19秒前
20秒前
20秒前
粥游天下完成签到,获得积分10
21秒前
jcc完成签到,获得积分10
21秒前
哈哈哈哈完成签到,获得积分10
21秒前
lighthouse完成签到,获得积分10
22秒前
平凡中的限量版完成签到,获得积分10
22秒前
大伟完成签到,获得积分10
22秒前
long关注了科研通微信公众号
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029