Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables

医学 淋巴血管侵犯 逻辑回归 阿达布思 人工智能 无线电技术 放射科 线性判别分析 癌症 内科学 转移 支持向量机 计算机科学
作者
Lijing Fan,Jing Li,Huiling Zhang,Hongkun Yin,Rongguo Zhang,Jibin Zhang,Xuejun Chen
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:47 (4): 1209-1222 被引量:33
标识
DOI:10.1007/s00261-021-03315-1
摘要

Lymphovascular invasion (LVI) is associated with metastasis and poor survival in patients with gastric cancer, yet the noninvasive diagnosis of LVI is difficult. This study aims to develop predictive models using different machine learning (ML) classifiers based on both enhanced CT and PET/CT images and clinical variables for preoperatively predicting lymphovascular invasion (LVI) status of gastric cancer.A total of 101 patients with gastric cancer who underwent surgery were retrospectively recruited, and the LVI status was confirmed by pathological analysis. Patients were randomly divided into a training dataset (n = 76) and a validation dataset (n = 25). By 3D manual segmentation, radiomics features were extracted from the PET and venous phase CT images. Image models, clinical models, and combined models were constructed by selected enhanced CT-based and PET-based radiomics features, clinical factors, and a combination of both, respectively. Three ML classifiers including adaptive boosting (AdaBoost), linear discriminant analysis (LDA), and logistic regression (LR) were used for model development. The performance of these predictive models was evaluated with respect to discrimination, calibration, and clinical usefulness.Ten radiomics features and eight clinical factors were selected for the development of predictive models. In the validation dataset, the area under curve (AUC) values of clinical models using AdaBoost, LDA, and LR classifiers were 0.742, 0.706, and 0.690, respectively. The image models using AdaBoost, LDA, and LR classifiers achieved an AUC of 0.849, 0.778, and 0.810, respectively. The combined models showed improved performance than the image models and the clinical models, with the AUC values of AdaBoost, LDA, and LR classifier yielding 0.944, 0.929, and 0.921, respectively. The combined models also showed good calibration and clinical usefulness for LVI prediction.ML-based models integrating PET/CT and enhanced CT radiomics features and clinical factors have good discrimination capability, which could serve as a noninvasive, preoperative tool for the prediction of LVI and assist surgical treatment decisions in patients with gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinrihui1应助九章采纳,获得10
1秒前
1秒前
Verity应助nffl采纳,获得20
1秒前
1秒前
科目三应助SCT采纳,获得30
1秒前
Guzp发布了新的文献求助10
1秒前
额度无法发布了新的文献求助10
2秒前
翟如风发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
2秒前
快快完成签到,获得积分10
2秒前
满意的觅风完成签到,获得积分10
2秒前
柯幼萱发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
cmx发布了新的文献求助10
3秒前
kento发布了新的文献求助50
3秒前
3秒前
3秒前
4秒前
4秒前
CYC完成签到 ,获得积分10
4秒前
秀莉完成签到,获得积分10
5秒前
s33完成签到,获得积分10
5秒前
5秒前
阳光的秋凌完成签到,获得积分10
6秒前
仙女爷爷发布了新的文献求助10
6秒前
Guzp完成签到,获得积分10
6秒前
明亮谷波发布了新的文献求助10
6秒前
7秒前
Alan完成签到,获得积分10
7秒前
听说发布了新的文献求助10
8秒前
智勇双全完成签到,获得积分10
8秒前
8秒前
懒洋洋发布了新的文献求助10
9秒前
9秒前
萱1988发布了新的文献求助10
9秒前
9秒前
Kkkkk发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759795
求助须知:如何正确求助?哪些是违规求助? 5522143
关于积分的说明 15395458
捐赠科研通 4896764
什么是DOI,文献DOI怎么找? 2633888
邀请新用户注册赠送积分活动 1581947
关于科研通互助平台的介绍 1537419