亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables

医学 淋巴血管侵犯 逻辑回归 阿达布思 人工智能 无线电技术 放射科 线性判别分析 癌症 内科学 转移 支持向量机 计算机科学
作者
Lijing Fan,Jing Li,Huiling Zhang,Hongkun Yin,Rongguo Zhang,Jibin Zhang,Xuejun Chen
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:47 (4): 1209-1222 被引量:33
标识
DOI:10.1007/s00261-021-03315-1
摘要

Lymphovascular invasion (LVI) is associated with metastasis and poor survival in patients with gastric cancer, yet the noninvasive diagnosis of LVI is difficult. This study aims to develop predictive models using different machine learning (ML) classifiers based on both enhanced CT and PET/CT images and clinical variables for preoperatively predicting lymphovascular invasion (LVI) status of gastric cancer.A total of 101 patients with gastric cancer who underwent surgery were retrospectively recruited, and the LVI status was confirmed by pathological analysis. Patients were randomly divided into a training dataset (n = 76) and a validation dataset (n = 25). By 3D manual segmentation, radiomics features were extracted from the PET and venous phase CT images. Image models, clinical models, and combined models were constructed by selected enhanced CT-based and PET-based radiomics features, clinical factors, and a combination of both, respectively. Three ML classifiers including adaptive boosting (AdaBoost), linear discriminant analysis (LDA), and logistic regression (LR) were used for model development. The performance of these predictive models was evaluated with respect to discrimination, calibration, and clinical usefulness.Ten radiomics features and eight clinical factors were selected for the development of predictive models. In the validation dataset, the area under curve (AUC) values of clinical models using AdaBoost, LDA, and LR classifiers were 0.742, 0.706, and 0.690, respectively. The image models using AdaBoost, LDA, and LR classifiers achieved an AUC of 0.849, 0.778, and 0.810, respectively. The combined models showed improved performance than the image models and the clinical models, with the AUC values of AdaBoost, LDA, and LR classifier yielding 0.944, 0.929, and 0.921, respectively. The combined models also showed good calibration and clinical usefulness for LVI prediction.ML-based models integrating PET/CT and enhanced CT radiomics features and clinical factors have good discrimination capability, which could serve as a noninvasive, preoperative tool for the prediction of LVI and assist surgical treatment decisions in patients with gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
27秒前
liufan完成签到 ,获得积分10
46秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
souther完成签到,获得积分0
2分钟前
乐乐应助Akitten采纳,获得10
2分钟前
2分钟前
kangkang发布了新的文献求助10
2分钟前
传奇完成签到 ,获得积分10
3分钟前
jyy关闭了jyy文献求助
3分钟前
丘比特应助怕孤单的思雁采纳,获得10
3分钟前
3分钟前
3分钟前
Akitten发布了新的文献求助10
3分钟前
3分钟前
Li完成签到,获得积分10
4分钟前
4分钟前
自然的衫完成签到 ,获得积分10
4分钟前
4分钟前
阿巴阿巴茶完成签到,获得积分10
5分钟前
lhy发布了新的文献求助10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
资白玉完成签到 ,获得积分0
5分钟前
华仔应助Akitten采纳,获得10
6分钟前
上官若男应助紫色奶萨采纳,获得10
6分钟前
老石完成签到 ,获得积分10
7分钟前
NexusExplorer应助科研通管家采纳,获得10
7分钟前
7分钟前
紫色奶萨发布了新的文献求助10
7分钟前
紫色奶萨完成签到,获得积分10
7分钟前
华仔应助怕孤单的思雁采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
Akitten发布了新的文献求助10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990298
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256481
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805197
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234