Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables

医学 淋巴血管侵犯 逻辑回归 阿达布思 人工智能 无线电技术 放射科 线性判别分析 癌症 内科学 转移 支持向量机 计算机科学
作者
Lijing Fan,Jing Li,Huiling Zhang,Hongkun Yin,Rongguo Zhang,Jibin Zhang,Xuejun Chen
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:47 (4): 1209-1222 被引量:20
标识
DOI:10.1007/s00261-021-03315-1
摘要

Lymphovascular invasion (LVI) is associated with metastasis and poor survival in patients with gastric cancer, yet the noninvasive diagnosis of LVI is difficult. This study aims to develop predictive models using different machine learning (ML) classifiers based on both enhanced CT and PET/CT images and clinical variables for preoperatively predicting lymphovascular invasion (LVI) status of gastric cancer.A total of 101 patients with gastric cancer who underwent surgery were retrospectively recruited, and the LVI status was confirmed by pathological analysis. Patients were randomly divided into a training dataset (n = 76) and a validation dataset (n = 25). By 3D manual segmentation, radiomics features were extracted from the PET and venous phase CT images. Image models, clinical models, and combined models were constructed by selected enhanced CT-based and PET-based radiomics features, clinical factors, and a combination of both, respectively. Three ML classifiers including adaptive boosting (AdaBoost), linear discriminant analysis (LDA), and logistic regression (LR) were used for model development. The performance of these predictive models was evaluated with respect to discrimination, calibration, and clinical usefulness.Ten radiomics features and eight clinical factors were selected for the development of predictive models. In the validation dataset, the area under curve (AUC) values of clinical models using AdaBoost, LDA, and LR classifiers were 0.742, 0.706, and 0.690, respectively. The image models using AdaBoost, LDA, and LR classifiers achieved an AUC of 0.849, 0.778, and 0.810, respectively. The combined models showed improved performance than the image models and the clinical models, with the AUC values of AdaBoost, LDA, and LR classifier yielding 0.944, 0.929, and 0.921, respectively. The combined models also showed good calibration and clinical usefulness for LVI prediction.ML-based models integrating PET/CT and enhanced CT radiomics features and clinical factors have good discrimination capability, which could serve as a noninvasive, preoperative tool for the prediction of LVI and assist surgical treatment decisions in patients with gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙游完成签到,获得积分10
1秒前
hml123发布了新的文献求助10
1秒前
科研混子发布了新的文献求助10
1秒前
1秒前
1秒前
最强魔神完成签到,获得积分0
2秒前
汉堡包应助不要讨好十三采纳,获得10
3秒前
4秒前
4秒前
5秒前
JamesPei应助estate采纳,获得10
5秒前
毛毛完成签到 ,获得积分10
5秒前
谦让大娘完成签到,获得积分10
6秒前
laj发布了新的文献求助10
7秒前
7秒前
FFFQH发布了新的文献求助10
7秒前
丝垚完成签到 ,获得积分10
8秒前
孙友浩完成签到,获得积分10
8秒前
9秒前
江一山发布了新的文献求助10
9秒前
10秒前
momo完成签到,获得积分10
10秒前
10秒前
11秒前
Kin发布了新的文献求助10
12秒前
科研通AI2S应助AAAA采纳,获得10
12秒前
希望天下0贩的0应助Rian采纳,获得10
12秒前
hn_zhx应助GEE采纳,获得20
13秒前
Jasper应助liu采纳,获得10
14秒前
寒冷的金鱼应助23xyke采纳,获得10
14秒前
15秒前
mw发布了新的文献求助10
15秒前
CipherSage应助laj采纳,获得10
15秒前
骑着蜗牛追流星完成签到,获得积分10
17秒前
FFFQH完成签到,获得积分20
18秒前
Acetonitrile应助zimiao采纳,获得20
18秒前
18秒前
18秒前
18秒前
Aster完成签到,获得积分20
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3251944
求助须知:如何正确求助?哪些是违规求助? 2894827
关于积分的说明 8283422
捐赠科研通 2563461
什么是DOI,文献DOI怎么找? 1391552
科研通“疑难数据库(出版商)”最低求助积分说明 651860
邀请新用户注册赠送积分活动 628894