Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables

医学 淋巴血管侵犯 逻辑回归 阿达布思 人工智能 无线电技术 放射科 线性判别分析 癌症 内科学 转移 支持向量机 计算机科学
作者
Lijing Fan,Jing Li,Huiling Zhang,Hongkun Yin,Rongguo Zhang,Jibin Zhang,Xuejun Chen
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:47 (4): 1209-1222 被引量:33
标识
DOI:10.1007/s00261-021-03315-1
摘要

Lymphovascular invasion (LVI) is associated with metastasis and poor survival in patients with gastric cancer, yet the noninvasive diagnosis of LVI is difficult. This study aims to develop predictive models using different machine learning (ML) classifiers based on both enhanced CT and PET/CT images and clinical variables for preoperatively predicting lymphovascular invasion (LVI) status of gastric cancer.A total of 101 patients with gastric cancer who underwent surgery were retrospectively recruited, and the LVI status was confirmed by pathological analysis. Patients were randomly divided into a training dataset (n = 76) and a validation dataset (n = 25). By 3D manual segmentation, radiomics features were extracted from the PET and venous phase CT images. Image models, clinical models, and combined models were constructed by selected enhanced CT-based and PET-based radiomics features, clinical factors, and a combination of both, respectively. Three ML classifiers including adaptive boosting (AdaBoost), linear discriminant analysis (LDA), and logistic regression (LR) were used for model development. The performance of these predictive models was evaluated with respect to discrimination, calibration, and clinical usefulness.Ten radiomics features and eight clinical factors were selected for the development of predictive models. In the validation dataset, the area under curve (AUC) values of clinical models using AdaBoost, LDA, and LR classifiers were 0.742, 0.706, and 0.690, respectively. The image models using AdaBoost, LDA, and LR classifiers achieved an AUC of 0.849, 0.778, and 0.810, respectively. The combined models showed improved performance than the image models and the clinical models, with the AUC values of AdaBoost, LDA, and LR classifier yielding 0.944, 0.929, and 0.921, respectively. The combined models also showed good calibration and clinical usefulness for LVI prediction.ML-based models integrating PET/CT and enhanced CT radiomics features and clinical factors have good discrimination capability, which could serve as a noninvasive, preoperative tool for the prediction of LVI and assist surgical treatment decisions in patients with gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dany发布了新的文献求助10
刚刚
明杰发布了新的文献求助10
刚刚
JING发布了新的文献求助10
刚刚
科研通AI6应助Wednesday Chong采纳,获得10
1秒前
Elena发布了新的文献求助10
1秒前
Stella应助zhuzhu采纳,获得10
1秒前
xxx完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
glf0203发布了新的文献求助10
3秒前
4秒前
沉默的书琴完成签到,获得积分10
4秒前
5秒前
三三完成签到,获得积分10
5秒前
星辰大海应助颜颜采纳,获得10
5秒前
wanting完成签到,获得积分20
5秒前
斯文败类应助清爽的易真采纳,获得10
6秒前
6秒前
puzhongjiMiQ发布了新的文献求助50
7秒前
青青儿发布了新的文献求助10
7秒前
puzhongjiMiQ发布了新的文献求助10
7秒前
puzhongjiMiQ发布了新的文献求助10
7秒前
舒适可乐完成签到,获得积分10
7秒前
puzhongjiMiQ发布了新的文献求助50
8秒前
puzhongjiMiQ发布了新的文献求助10
8秒前
scutwqq发布了新的文献求助10
8秒前
我不爱池鱼应助cxw采纳,获得10
8秒前
科研通AI6应助耍酷蝴蝶采纳,获得10
8秒前
8秒前
uu完成签到 ,获得积分10
8秒前
小小的梦想完成签到,获得积分10
9秒前
9秒前
9秒前
自挂东南枝完成签到,获得积分10
9秒前
10秒前
辻诺完成签到,获得积分10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581398
求助须知:如何正确求助?哪些是违规求助? 4665771
关于积分的说明 14758591
捐赠科研通 4607692
什么是DOI,文献DOI怎么找? 2528319
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466474