Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset

弹丸 人工智能 计算机科学 一次性 模式识别(心理学) 机器学习 工程类 材料科学 机械工程 冶金
作者
Krzysztof Pałczyński,Sandra Śmigiel,Damian Ledziński,Sławomir Bujnowski
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 904-904 被引量:21
标识
DOI:10.3390/s22030904
摘要

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zxc发布了新的文献求助10
刚刚
nininidoc完成签到,获得积分10
1秒前
123号发布了新的文献求助10
3秒前
Chen发布了新的文献求助10
4秒前
汉堡包应助caoyy采纳,获得10
4秒前
阳阳发布了新的文献求助10
4秒前
田所浩二完成签到 ,获得积分10
4秒前
4秒前
华仔应助奶糖采纳,获得30
5秒前
动力小滋完成签到,获得积分10
5秒前
ding应助瑶一瑶采纳,获得10
8秒前
fmwang完成签到,获得积分10
9秒前
万能图书馆应助Zxc采纳,获得10
9秒前
Rainbow完成签到,获得积分10
9秒前
小小郭完成签到 ,获得积分10
9秒前
11秒前
Orange应助务实的犀牛采纳,获得10
11秒前
追寻飞风完成签到,获得积分10
11秒前
wenli完成签到,获得积分10
12秒前
12秒前
13秒前
Schmoo完成签到,获得积分10
14秒前
16秒前
圆圆的脑袋应助涛浪采纳,获得10
17秒前
隐形曼青应助皮皮桂采纳,获得10
18秒前
凝子老师完成签到,获得积分10
18秒前
奶糖发布了新的文献求助30
18秒前
TORCH完成签到 ,获得积分10
20秒前
李健的小迷弟应助lin采纳,获得10
20秒前
20秒前
21秒前
TT发布了新的文献求助10
21秒前
奶糖完成签到,获得积分10
24秒前
丘比特应助浪迹天涯采纳,获得10
25秒前
27秒前
27秒前
虚幻白玉发布了新的文献求助10
28秒前
清客完成签到 ,获得积分10
28秒前
传奇3应助阳阳采纳,获得10
28秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849