Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset

弹丸 人工智能 计算机科学 一次性 模式识别(心理学) 机器学习 工程类 材料科学 机械工程 冶金
作者
Krzysztof Pałczyński,Sandra Śmigiel,Damian Ledziński,Sławomir Bujnowski
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (3): 904-904 被引量:21
标识
DOI:10.3390/s22030904
摘要

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助法芙娜采纳,获得10
刚刚
晓晓发布了新的文献求助10
2秒前
2秒前
Mydddg完成签到,获得积分10
3秒前
任全强发布了新的文献求助10
3秒前
摆烂研究牲完成签到,获得积分10
3秒前
4秒前
xiaoshuai发布了新的文献求助10
7秒前
充电宝应助Jane采纳,获得10
7秒前
7秒前
852应助任全强采纳,获得10
9秒前
Tingting发布了新的文献求助10
10秒前
12秒前
12秒前
完美世界应助123采纳,获得10
12秒前
爱笑以松完成签到,获得积分10
12秒前
orixero应助优雅狗采纳,获得10
13秒前
西瓜草莓火龙果完成签到,获得积分10
13秒前
14秒前
火翟丰丰山心完成签到,获得积分10
15秒前
Mike14完成签到,获得积分10
16秒前
16秒前
善良的沉鱼完成签到,获得积分10
16秒前
迷人的Jack发布了新的文献求助10
17秒前
17秒前
17秒前
千夜发布了新的文献求助10
17秒前
丘比特应助潘潘采纳,获得10
17秒前
自由大叔发布了新的文献求助10
18秒前
孙燕应助科研通管家采纳,获得10
18秒前
夏宇应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
灿灿应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
wy.he应助科研通管家采纳,获得10
19秒前
Y先生应助科研通管家采纳,获得20
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
Y先生应助科研通管家采纳,获得20
19秒前
孙燕应助科研通管家采纳,获得10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352