Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset

弹丸 人工智能 计算机科学 一次性 模式识别(心理学) 机器学习 工程类 材料科学 机械工程 冶金
作者
Krzysztof Pałczyński,Sandra Śmigiel,Damian Ledziński,Sławomir Bujnowski
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (3): 904-904 被引量:21
标识
DOI:10.3390/s22030904
摘要

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏敏发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
丘比特应助wsgdhz采纳,获得10
1秒前
Hoyshin应助Sui采纳,获得20
2秒前
kangnakangna发布了新的文献求助20
2秒前
共享精神应助芋泥桃桃采纳,获得10
2秒前
支盼夏完成签到,获得积分10
2秒前
科目三应助jstagey采纳,获得10
3秒前
科研通AI5应助徐昊雯采纳,获得10
3秒前
wz发布了新的文献求助10
3秒前
dxp完成签到,获得积分10
3秒前
ln发布了新的文献求助10
4秒前
李健应助合适板栗采纳,获得10
4秒前
4秒前
平淡的雁开应助JUAN采纳,获得10
5秒前
5秒前
5秒前
Hello应助魏不不采纳,获得10
6秒前
後知後孓完成签到,获得积分10
7秒前
8秒前
8秒前
周维发布了新的文献求助10
8秒前
9秒前
想毕业完成签到,获得积分10
9秒前
後知後孓发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
狂野谷冬完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
ZexiWu发布了新的文献求助20
12秒前
玖念发布了新的文献求助10
13秒前
想毕业发布了新的文献求助40
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
kingwill应助科研通管家采纳,获得20
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709