Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset

弹丸 人工智能 计算机科学 一次性 模式识别(心理学) 机器学习 工程类 材料科学 机械工程 冶金
作者
Krzysztof Pałczyński,Sandra Śmigiel,Damian Ledziński,Sławomir Bujnowski
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 904-904 被引量:21
标识
DOI:10.3390/s22030904
摘要

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nice完成签到,获得积分10
刚刚
完美世界应助顺利毕业采纳,获得10
刚刚
syy080837发布了新的文献求助10
1秒前
1秒前
1秒前
Draco完成签到,获得积分10
1秒前
今后应助积极的Fang采纳,获得10
1秒前
1秒前
JJ完成签到,获得积分10
2秒前
2秒前
你真是那个啊完成签到,获得积分10
2秒前
JYZ发布了新的文献求助10
3秒前
皮皮完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
花开富贵发布了新的文献求助10
4秒前
CodeCraft应助ee采纳,获得10
4秒前
4秒前
4秒前
zgrmws应助梅江采纳,获得10
5秒前
阿里猪完成签到,获得积分10
5秒前
lilili应助清仔采纳,获得10
5秒前
图图发布了新的文献求助10
6秒前
zxdw完成签到,获得积分10
6秒前
zmq完成签到,获得积分10
6秒前
7秒前
无极微光应助晴雪采纳,获得20
7秒前
7秒前
hongxian发布了新的文献求助10
7秒前
调皮修洁完成签到,获得积分10
8秒前
8秒前
充电宝应助明天的我采纳,获得10
8秒前
8秒前
瘦瘦冰凡发布了新的文献求助10
8秒前
xiaoqf完成签到,获得积分10
8秒前
lejunia发布了新的文献求助10
9秒前
10秒前
10秒前
院士完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762