Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset

弹丸 人工智能 计算机科学 一次性 模式识别(心理学) 机器学习 工程类 材料科学 机械工程 冶金
作者
Krzysztof Pałczyński,Sandra Śmigiel,Damian Ledziński,Sławomir Bujnowski
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 904-904 被引量:21
标识
DOI:10.3390/s22030904
摘要

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
hancahngxiao完成签到,获得积分10
2秒前
yeye发布了新的文献求助10
2秒前
lan完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
做好自己完成签到,获得积分20
2秒前
BigFlash完成签到,获得积分10
3秒前
3秒前
YsGao应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
风中凌旋应助科研通管家采纳,获得10
3秒前
YsGao应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
风中凌旋应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
4秒前
风中凌旋应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助万里采纳,获得10
4秒前
元谷雪应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
杜明智发布了新的文献求助10
4秒前
打打应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
有趣的桃应助科研通管家采纳,获得10
4秒前
风中凌旋应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
YsGao应助科研通管家采纳,获得10
4秒前
风中凌旋应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454