Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset

弹丸 人工智能 计算机科学 一次性 模式识别(心理学) 机器学习 工程类 材料科学 机械工程 冶金
作者
Krzysztof Pałczyński,Sandra Śmigiel,Damian Ledziński,Sławomir Bujnowski
出处
期刊:Sensors [MDPI AG]
卷期号:22 (3): 904-904 被引量:21
标识
DOI:10.3390/s22030904
摘要

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fg发布了新的文献求助10
3秒前
赘婿应助ksr8888采纳,获得10
5秒前
5秒前
刘同学发布了新的文献求助10
5秒前
7秒前
且悲且歌完成签到,获得积分10
8秒前
田様应助supersky采纳,获得10
8秒前
佛四魁儿应助Daheitao采纳,获得10
9秒前
事事顺利完成签到,获得积分10
9秒前
9秒前
9秒前
昵称完成签到,获得积分10
10秒前
十一发布了新的文献求助10
12秒前
十二完成签到,获得积分10
12秒前
mozhi完成签到,获得积分20
13秒前
Singularity举报湖月照我影求助涉嫌违规
13秒前
净禅发布了新的文献求助10
14秒前
16秒前
mozhi发布了新的文献求助20
16秒前
18秒前
18秒前
18秒前
20秒前
良辰应助LLL采纳,获得10
20秒前
kikiaini完成签到,获得积分0
21秒前
21秒前
21秒前
qifei完成签到,获得积分10
22秒前
华仔应助BJ_whc采纳,获得10
23秒前
CRT发布了新的文献求助10
24秒前
排列组合式文章完成签到,获得积分10
25秒前
Ruijun发布了新的文献求助10
25秒前
乐安发布了新的文献求助10
25秒前
庞博发布了新的文献求助30
25秒前
27秒前
栀子完成签到,获得积分10
28秒前
30秒前
30秒前
kk完成签到,获得积分10
30秒前
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129