Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 精神科 经济 管理
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sakkaku发布了新的文献求助30
2秒前
够苟发布了新的文献求助10
2秒前
无花果应助迷路芷波采纳,获得10
2秒前
3秒前
科研混子发布了新的文献求助10
3秒前
Lengbo发布了新的文献求助10
3秒前
xrl发布了新的文献求助10
4秒前
852应助安详的觅风采纳,获得10
4秒前
xxfsx应助科研混子采纳,获得10
4秒前
大个应助合适小凝采纳,获得10
4秒前
华仔应助科研混子采纳,获得10
4秒前
科目三应助拼搏的青雪采纳,获得10
5秒前
wwww威完成签到,获得积分10
5秒前
5秒前
稳重的糖豆完成签到,获得积分10
6秒前
Akim应助阿辉采纳,获得10
6秒前
6秒前
LL关闭了LL文献求助
7秒前
赘婿应助11112233采纳,获得10
7秒前
G蛋白偶联完成签到,获得积分10
8秒前
higgskk完成签到,获得积分10
8秒前
健珍发布了新的文献求助10
8秒前
外向翠风发布了新的文献求助10
8秒前
9秒前
LutongZhang发布了新的文献求助20
9秒前
Akim应助於凡之采纳,获得10
10秒前
科研小狗完成签到 ,获得积分10
10秒前
神勇的傲安完成签到,获得积分10
10秒前
科研混子完成签到,获得积分20
10秒前
安详灵安发布了新的文献求助10
10秒前
MaRin完成签到,获得积分20
10秒前
迷人寒梦发布了新的文献求助10
10秒前
赖俊峰完成签到 ,获得积分10
12秒前
cyy发布了新的文献求助10
12秒前
科研通AI2S应助橘皮灯灯采纳,获得10
12秒前
琉璃完成签到,获得积分10
12秒前
13秒前
13秒前
pgfx1993完成签到,获得积分10
14秒前
wangzian完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5169002
求助须知:如何正确求助?哪些是违规求助? 4360389
关于积分的说明 13576138
捐赠科研通 4207207
什么是DOI,文献DOI怎么找? 2307389
邀请新用户注册赠送积分活动 1306942
关于科研通互助平台的介绍 1253600