Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 精神科 经济 管理
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackhlj完成签到,获得积分10
1秒前
SciGPT应助魁梧的盼雁采纳,获得10
1秒前
1秒前
柚子发布了新的文献求助10
1秒前
英俊的铭应助对称破缺采纳,获得10
2秒前
科目三应助合适的听白采纳,获得30
4秒前
4秒前
神勇难胜完成签到 ,获得积分10
7秒前
zhangyx完成签到 ,获得积分0
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
等待的问夏完成签到 ,获得积分10
9秒前
酷波er应助小呆子采纳,获得10
9秒前
顺利的歌曲完成签到,获得积分10
10秒前
wanci应助柚子采纳,获得10
11秒前
meng完成签到,获得积分10
12秒前
12秒前
sunwei完成签到,获得积分10
13秒前
13秒前
13秒前
俏皮的采波完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
apk866完成签到 ,获得积分10
16秒前
xurui_s完成签到 ,获得积分10
16秒前
蒹葭发布了新的文献求助10
18秒前
18秒前
不安红豆发布了新的文献求助10
18秒前
19秒前
巨鱼完成签到,获得积分20
19秒前
小薇丸子完成签到,获得积分10
20秒前
jessie完成签到,获得积分10
22秒前
24秒前
星河万里发布了新的文献求助10
25秒前
niekyang完成签到 ,获得积分10
25秒前
somous完成签到,获得积分10
25秒前
25秒前
qinjiehm完成签到,获得积分10
28秒前
爱吃西瓜完成签到,获得积分10
28秒前
28秒前
yolo完成签到,获得积分10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071