亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 精神科 经济 管理
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Billy完成签到,获得积分0
5秒前
8秒前
9秒前
11秒前
SYLH应助Billy采纳,获得10
15秒前
量子星尘发布了新的文献求助10
25秒前
lascqy完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
优秀黑夜发布了新的文献求助10
1分钟前
Ava应助优秀黑夜采纳,获得10
1分钟前
冰留完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
852应助feiying采纳,获得10
2分钟前
无花果应助breeze采纳,获得10
2分钟前
隐形曼青应助Master采纳,获得10
3分钟前
3分钟前
Master发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
al完成签到 ,获得积分10
3分钟前
3分钟前
早早发布了新的文献求助10
3分钟前
科研通AI5应助Djnsbj采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
顺心蜜粉发布了新的文献求助200
5分钟前
5分钟前
Djnsbj发布了新的文献求助10
5分钟前
5分钟前
breeze发布了新的文献求助10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
Daisy完成签到,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助150
6分钟前
自由的无色完成签到 ,获得积分10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204743
捐赠科研通 3257502
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629