Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 精神科 经济 管理
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hzy发布了新的文献求助10
刚刚
刚刚
AoAoo发布了新的文献求助10
刚刚
1秒前
感动板凳完成签到,获得积分10
1秒前
Jasper应助zxswuyin采纳,获得10
1秒前
puppy发布了新的文献求助10
2秒前
2秒前
zqy发布了新的文献求助10
2秒前
牛人完成签到,获得积分0
3秒前
Cj发布了新的文献求助10
3秒前
4秒前
仅此而已发布了新的文献求助10
4秒前
Jasper应助ww采纳,获得10
4秒前
5秒前
低温少年发布了新的文献求助10
6秒前
6秒前
6秒前
黄黄发布了新的文献求助10
6秒前
在水一方应助haby采纳,获得10
7秒前
Yanning完成签到,获得积分10
7秒前
星辰大海应助wangbw采纳,获得10
7秒前
7秒前
viv完成签到 ,获得积分10
7秒前
科研通AI2S应助zqs采纳,获得10
7秒前
无色热带鱼完成签到,获得积分10
7秒前
8秒前
8秒前
momo发布了新的文献求助20
8秒前
9秒前
无辜的秀发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
chiq发布了新的文献求助10
9秒前
9秒前
无奈曼云发布了新的文献求助10
10秒前
gan发布了新的文献求助10
10秒前
w_sea应助虚幻的冷松采纳,获得10
10秒前
仅此而已完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519463
求助须知:如何正确求助?哪些是违规求助? 4611578
关于积分的说明 14529324
捐赠科研通 4548989
什么是DOI,文献DOI怎么找? 2492649
邀请新用户注册赠送积分活动 1473838
关于科研通互助平台的介绍 1445652