清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 精神科 经济 管理
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邱佩群完成签到 ,获得积分10
1秒前
火蓝完成签到,获得积分10
6秒前
忒寒碜完成签到,获得积分10
7秒前
KYTQQ完成签到 ,获得积分10
9秒前
sophia完成签到 ,获得积分10
11秒前
yupaopao发布了新的文献求助10
16秒前
可靠的一手完成签到 ,获得积分10
31秒前
32秒前
muzi完成签到 ,获得积分10
33秒前
Daisy发布了新的文献求助10
37秒前
wushuimei完成签到 ,获得积分10
39秒前
Russell完成签到 ,获得积分10
39秒前
wwwwwl完成签到 ,获得积分10
40秒前
毛毛完成签到,获得积分10
41秒前
YZY完成签到 ,获得积分10
41秒前
Karl完成签到,获得积分10
48秒前
优雅的平安完成签到 ,获得积分10
53秒前
Criminology34应助keke采纳,获得10
1分钟前
琦玉老师的小跟班完成签到 ,获得积分10
1分钟前
蚂蚁飞飞完成签到,获得积分10
1分钟前
Daisy完成签到,获得积分10
1分钟前
Criminology34应助keke采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
周博应助科研通管家采纳,获得10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
2分钟前
MS903完成签到 ,获得积分10
2分钟前
xiaofeixia完成签到 ,获得积分10
2分钟前
lod完成签到,获得积分10
2分钟前
大意的火龙果完成签到 ,获得积分10
2分钟前
GHX完成签到 ,获得积分10
2分钟前
科研通AI2S应助keke采纳,获得10
2分钟前
bo完成签到 ,获得积分10
2分钟前
钰泠完成签到 ,获得积分10
2分钟前
聪慧的从雪完成签到 ,获得积分10
2分钟前
楠楠2001完成签到 ,获得积分10
2分钟前
sevenhill完成签到 ,获得积分0
2分钟前
喻初原完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664649
求助须知:如何正确求助?哪些是违规求助? 4867040
关于积分的说明 15108233
捐赠科研通 4823308
什么是DOI,文献DOI怎么找? 2582201
邀请新用户注册赠送积分活动 1536254
关于科研通互助平台的介绍 1494653