Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 精神科 经济 管理
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿玖完成签到 ,获得积分10
1秒前
布同完成签到,获得积分10
1秒前
堀江真夏完成签到 ,获得积分10
2秒前
Pauline完成签到 ,获得积分10
3秒前
能干戎完成签到,获得积分10
3秒前
悦耳怜南完成签到,获得积分10
3秒前
小丑鱼儿完成签到 ,获得积分10
4秒前
唐Doctor发布了新的文献求助10
5秒前
molly雨轩完成签到,获得积分10
5秒前
王明阳完成签到 ,获得积分10
5秒前
gcl完成签到,获得积分10
7秒前
Hzml完成签到 ,获得积分10
9秒前
妖精完成签到 ,获得积分10
10秒前
10秒前
11秒前
江哥完成签到,获得积分10
11秒前
mengmenglv完成签到 ,获得积分0
11秒前
xdc完成签到,获得积分20
11秒前
12秒前
Zo完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
明亮的小懒虫完成签到 ,获得积分10
14秒前
xdc发布了新的文献求助10
15秒前
wl完成签到,获得积分20
15秒前
gf完成签到 ,获得积分10
15秒前
英姑应助唐Doctor采纳,获得10
16秒前
16秒前
17秒前
18秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
19秒前
好困发布了新的文献求助10
19秒前
CosnEdge完成签到,获得积分10
19秒前
思苇完成签到,获得积分10
20秒前
999完成签到,获得积分10
22秒前
不会游泳的鱼完成签到,获得积分10
23秒前
24秒前
Dr_Han完成签到,获得积分10
25秒前
奋斗往事完成签到 ,获得积分10
25秒前
丁圣元完成签到,获得积分10
25秒前
心信鑫完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861