Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 精神科 经济 管理
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roy发布了新的文献求助10
2秒前
3秒前
bb完成签到,获得积分10
3秒前
小蘑菇应助Yitianqi采纳,获得10
3秒前
gww发布了新的文献求助10
3秒前
zxx发布了新的文献求助10
4秒前
4秒前
小蘑菇应助pups采纳,获得10
4秒前
ZeSheng完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
7秒前
YuanFeng发布了新的文献求助10
8秒前
Forever完成签到,获得积分10
8秒前
10秒前
zhao发布了新的文献求助10
10秒前
11秒前
刘淼完成签到,获得积分10
11秒前
11秒前
11秒前
深情安青应助巍峨采纳,获得10
11秒前
科研小柠檬完成签到,获得积分10
11秒前
当代完成签到 ,获得积分10
12秒前
12秒前
12秒前
wwf发布了新的文献求助10
13秒前
dl应助大方元风采纳,获得10
13秒前
JEEH发布了新的文献求助10
14秒前
14秒前
星期八发布了新的文献求助10
14秒前
15秒前
15秒前
1233330发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
哈尼发布了新的文献求助10
16秒前
nature发布了新的文献求助10
17秒前
LioraLi发布了新的文献求助10
17秒前
大胆的以冬完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058