亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data augmentation for Convolutional LSTM based brain computer interface system

计算机科学 脑电图 人工智能 脑-机接口 卷积神经网络 模式识别(心理学) 深度学习 运动表象 任务(项目管理) 人工神经网络 语音识别 机器学习 心理学 管理 精神科 经济
作者
Kahoko Takahashi,Zhe Sun,Jordi Solé‐Casals,Andrzej Cichocki,Anh Huy Phan,Qibin Zhao,Hui‐Hai Zhao,Shangkun Deng,Ruggero Micheletto
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108811-108811 被引量:4
标识
DOI:10.1016/j.asoc.2022.108811
摘要

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稻子完成签到 ,获得积分10
47秒前
1分钟前
Londidi完成签到,获得积分10
1分钟前
学术混子完成签到,获得积分10
2分钟前
souther完成签到,获得积分0
2分钟前
xuli21315完成签到 ,获得积分10
3分钟前
4分钟前
FUNG完成签到 ,获得积分10
4分钟前
5分钟前
yang发布了新的文献求助10
5分钟前
yang完成签到,获得积分20
6分钟前
Jonas完成签到,获得积分10
6分钟前
摆烂的熊猫完成签到,获得积分20
7分钟前
柔弱的恋风完成签到 ,获得积分10
8分钟前
8分钟前
ding应助淡然平蓝采纳,获得10
9分钟前
chiazy完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
爱静静完成签到,获得积分0
9分钟前
zyx完成签到,获得积分10
10分钟前
wy123完成签到 ,获得积分10
10分钟前
善学以致用应助markzhang采纳,获得10
11分钟前
11分钟前
markzhang发布了新的文献求助10
12分钟前
喜雨起来啦完成签到,获得积分10
12分钟前
SciGPT应助markzhang采纳,获得10
12分钟前
科研通AI2S应助zhouleiwang采纳,获得10
13分钟前
冬去春来完成签到 ,获得积分10
13分钟前
烟花应助zhouleiwang采纳,获得10
13分钟前
上官若男应助碧蓝一德采纳,获得10
14分钟前
14分钟前
yy发布了新的文献求助10
14分钟前
14分钟前
顾矜应助yy采纳,获得10
14分钟前
烟花应助科研通管家采纳,获得10
14分钟前
markzhang发布了新的文献求助10
14分钟前
yy完成签到,获得积分10
14分钟前
markzhang完成签到,获得积分10
15分钟前
15分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7807027
捐赠科研通 2449875
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328