已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multilevel Deformable Attention-Aggregated Networks for Change Detection in Bitemporal Remote Sensing Imagery

计算机科学 判别式 特征(语言学) 人工智能 变更检测 背景(考古学) 模式识别(心理学) 编码器 语言学 生物 操作系统 哲学 古生物学
作者
Xiaokang Zhang,Weikang Yu,Man-On Pun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:23
标识
DOI:10.1109/tgrs.2022.3157721
摘要

Deep learning (DL) approaches based on convolutional encoder–decoder networks have shown promising results in bitemporal change detection. However, their performance is limited by insufficient contextual information aggregation because they cannot fully capture the implicit contextual dependency relationships among feature maps at different levels. Moreover, harvesting long-range contextual information typically incurs high computational complexity. To circumvent these challenges, we propose multilevel deformable attention-aggregated networks (MLDANets) to effectively learn long-range dependencies across multiple levels of bitemporal convolutional features for multiscale context aggregation. Specifically, a multilevel change-aware deformable attention (MCDA) module consisting of linear projections with learnable parameters is built based on multihead self-attention (SA) with a deformable sampling strategy. It is applied in the skip connections of an encoder–decoder network taking a bitemporal deep feature hypersequence (BDFH) as input. MCDA can progressively address a set of informative sampling locations in multilevel feature maps for each query element in the BDFH. Simultaneously, MCDA learns to characterize beneficial information from different spatial and feature subspaces of BDFH using multiple attention heads for change perception. As a result, contextual dependencies across multiple levels of bitemporal feature maps can be adaptively aggregated via attention weights to generate multilevel discriminative change-aware representations. Experiments on very-high-resolution (VHR) datasets verify that MLDANets outperform state-of-the-art change detection approaches with dramatically faster training convergence and high computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助LeuinPonsgi采纳,获得10
刚刚
xunmacaoyan发布了新的文献求助10
刚刚
刚刚
zhaochenyu发布了新的文献求助10
2秒前
蚂蚁飞飞完成签到,获得积分10
3秒前
傲娇的曼香发布了新的文献求助250
3秒前
harmon发布了新的文献求助10
3秒前
6秒前
科研通AI6应助半_采纳,获得10
6秒前
失眠无声发布了新的文献求助10
6秒前
博ge完成签到 ,获得积分10
7秒前
当当完成签到 ,获得积分10
8秒前
liaojun完成签到,获得积分10
8秒前
Ally发布了新的文献求助10
8秒前
xunmacaoyan完成签到,获得积分10
9秒前
9秒前
fanfan完成签到,获得积分10
10秒前
走走发布了新的文献求助10
11秒前
11秒前
乐乐应助失眠无声采纳,获得10
12秒前
zhaochenyu完成签到,获得积分10
13秒前
liaojun发布了新的文献求助10
14秒前
16秒前
ronnie完成签到,获得积分10
18秒前
19秒前
21秒前
隐形曼青应助Ally采纳,获得10
22秒前
xcc完成签到,获得积分10
26秒前
Hello应助可靠的寒风采纳,获得10
27秒前
28秒前
可爱牛青完成签到,获得积分10
28秒前
29秒前
29秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
orixero应助科研通管家采纳,获得10
30秒前
30秒前
小杭76应助哦吼吼采纳,获得10
31秒前
33秒前
123发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396