Real-Time Crash Likelihood Prediction Using Temporal Attention–Based Deep Learning and Trajectory Fusion

撞车 弹道 水准点(测量) 计算机科学 深度学习 人工智能 卷积神经网络 时间序列 恒虚警率 机器学习 数据挖掘 物理 天文 程序设计语言 大地测量学 地理
作者
Pei Li,Mohamed Abdel‐Aty
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:148 (7) 被引量:19
标识
DOI:10.1061/jtepbs.0000697
摘要

A crucial component of the proactive traffic safety management system is the real-time crash likelihood prediction model, which takes real-time traffic data as input and predicts the crash likelihood for the next 5+ min. This study aims to investigate the application of trajectory fusion to crash likelihood prediction and improve the predictive accuracy of the deep learning crash likelihood prediction model using the temporal attention mechanism. Two trajectory data were integrated using data fusion techniques. Specifically, trajectory data from Lynx buses and the Lytx fleet were collected using the automatic vehicle locator (AVL) and Lytx DriveCam, respectively. A deep learning model was developed for predicting real-time crash likelihood using features extracted from trajectory data. The proposed model contained a temporal attention–based long short-term memory (TA-LSTM) and a convolutional neural network (CNN). Temporal attention was introduced to capture temporal correlations between time-series data. Experimental results suggested that temporal attention could significantly improve the model’s performance on crash likelihood prediction. The proposed model outperformed other benchmark models in terms of sensitivity and false alarm rate. Moreover, trajectory fusion improved the predictive accuracy of the proposed model, which indicated the importance of having data from different types of vehicles for developing real-time crash likelihood prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潺潺流水完成签到,获得积分10
1秒前
阿海的发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
liu11发布了新的文献求助10
2秒前
2秒前
叶访云发布了新的文献求助10
3秒前
欣慰元蝶应助leslie采纳,获得10
3秒前
3秒前
支原体感染力完成签到,获得积分10
4秒前
无花果应助嘉嘉嘉嘉嘉采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
星辰大海应助龙山采纳,获得10
4秒前
Aoopiy完成签到,获得积分10
4秒前
隐形曼青应助李佳采纳,获得10
5秒前
犹豫酸奶发布了新的文献求助10
6秒前
敏感小霸王关注了科研通微信公众号
6秒前
带象发布了新的文献求助10
6秒前
水水完成签到,获得积分20
6秒前
6秒前
充电宝应助风清扬采纳,获得10
6秒前
汤圆发布了新的文献求助10
7秒前
小二郎应助王哈哈采纳,获得10
7秒前
7秒前
大碗发布了新的文献求助20
7秒前
玄风完成签到,获得积分0
7秒前
大模型应助34Kenny采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
思源应助LooQueSiento采纳,获得20
9秒前
9秒前
WINK完成签到,获得积分10
9秒前
NexusExplorer应助阿里嘎多采纳,获得10
10秒前
赫诗桃发布了新的文献求助10
10秒前
楠810217完成签到,获得积分10
10秒前
哲999发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594