Real-Time Crash Likelihood Prediction Using Temporal Attention–Based Deep Learning and Trajectory Fusion

撞车 弹道 水准点(测量) 计算机科学 深度学习 人工智能 卷积神经网络 时间序列 恒虚警率 机器学习 数据挖掘 天文 大地测量学 物理 程序设计语言 地理
作者
Li Pei,Mohamed Abdel-Aty
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:148 (7) 被引量:6
标识
DOI:10.1061/jtepbs.0000697
摘要

A crucial component of the proactive traffic safety management system is the real-time crash likelihood prediction model, which takes real-time traffic data as input and predicts the crash likelihood for the next 5+ min. This study aims to investigate the application of trajectory fusion to crash likelihood prediction and improve the predictive accuracy of the deep learning crash likelihood prediction model using the temporal attention mechanism. Two trajectory data were integrated using data fusion techniques. Specifically, trajectory data from Lynx buses and the Lytx fleet were collected using the automatic vehicle locator (AVL) and Lytx DriveCam, respectively. A deep learning model was developed for predicting real-time crash likelihood using features extracted from trajectory data. The proposed model contained a temporal attention–based long short-term memory (TA-LSTM) and a convolutional neural network (CNN). Temporal attention was introduced to capture temporal correlations between time-series data. Experimental results suggested that temporal attention could significantly improve the model’s performance on crash likelihood prediction. The proposed model outperformed other benchmark models in terms of sensitivity and false alarm rate. Moreover, trajectory fusion improved the predictive accuracy of the proposed model, which indicated the importance of having data from different types of vehicles for developing real-time crash likelihood prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
zhangjx发布了新的文献求助50
1秒前
chiyu完成签到,获得积分10
2秒前
Demi完成签到,获得积分10
3秒前
xiaoyezi123完成签到,获得积分10
3秒前
4秒前
萧布完成签到,获得积分10
4秒前
ggg完成签到,获得积分10
4秒前
5秒前
在水一方应助dannnnn采纳,获得10
5秒前
labxgr完成签到,获得积分10
5秒前
5秒前
jjb123666完成签到,获得积分20
6秒前
wxyinhefeng完成签到 ,获得积分10
7秒前
汉堡包应助欢快小土豆采纳,获得30
7秒前
8秒前
加加油发布了新的文献求助10
8秒前
8秒前
健壮惋清完成签到 ,获得积分10
8秒前
丘比特应助Sugaryeah采纳,获得10
9秒前
跳跃发布了新的文献求助10
9秒前
10秒前
11秒前
Orange应助亚鲁采纳,获得10
11秒前
11秒前
wanci应助科研通管家采纳,获得10
11秒前
哔哔应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
哦哦完成签到,获得积分10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
孙梁子应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
12秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012