Real-Time Crash Likelihood Prediction Using Temporal Attention–Based Deep Learning and Trajectory Fusion

撞车 弹道 水准点(测量) 计算机科学 深度学习 人工智能 卷积神经网络 时间序列 恒虚警率 机器学习 数据挖掘 物理 天文 程序设计语言 大地测量学 地理
作者
Pei Li,Mohamed Abdel‐Aty
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:148 (7) 被引量:19
标识
DOI:10.1061/jtepbs.0000697
摘要

A crucial component of the proactive traffic safety management system is the real-time crash likelihood prediction model, which takes real-time traffic data as input and predicts the crash likelihood for the next 5+ min. This study aims to investigate the application of trajectory fusion to crash likelihood prediction and improve the predictive accuracy of the deep learning crash likelihood prediction model using the temporal attention mechanism. Two trajectory data were integrated using data fusion techniques. Specifically, trajectory data from Lynx buses and the Lytx fleet were collected using the automatic vehicle locator (AVL) and Lytx DriveCam, respectively. A deep learning model was developed for predicting real-time crash likelihood using features extracted from trajectory data. The proposed model contained a temporal attention–based long short-term memory (TA-LSTM) and a convolutional neural network (CNN). Temporal attention was introduced to capture temporal correlations between time-series data. Experimental results suggested that temporal attention could significantly improve the model’s performance on crash likelihood prediction. The proposed model outperformed other benchmark models in terms of sensitivity and false alarm rate. Moreover, trajectory fusion improved the predictive accuracy of the proposed model, which indicated the importance of having data from different types of vehicles for developing real-time crash likelihood prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DZS完成签到 ,获得积分10
8秒前
wml发布了新的文献求助10
8秒前
七厘米发布了新的文献求助10
8秒前
506407完成签到,获得积分10
10秒前
土拨鼠完成签到 ,获得积分0
11秒前
liukanhai完成签到,获得积分10
14秒前
豆⑧完成签到,获得积分10
18秒前
不劳而获完成签到 ,获得积分10
23秒前
JUN完成签到,获得积分10
24秒前
shacodow完成签到,获得积分10
25秒前
ll完成签到,获得积分10
27秒前
瞿人雄完成签到,获得积分10
28秒前
龙弟弟完成签到 ,获得积分10
29秒前
没心没肺完成签到,获得积分10
30秒前
学术霸王完成签到,获得积分10
31秒前
1002SHIB完成签到,获得积分10
32秒前
nihaolaojiu完成签到,获得积分10
32秒前
sheetung完成签到,获得积分10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
57秒前
路漫漫其修远兮完成签到 ,获得积分10
58秒前
月下荷花完成签到 ,获得积分10
58秒前
小山己几完成签到,获得积分10
1分钟前
李音完成签到 ,获得积分10
1分钟前
七厘米发布了新的文献求助10
1分钟前
哥哥发布了新的文献求助10
1分钟前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
七厘米完成签到,获得积分10
1分钟前
单纯无声完成签到 ,获得积分10
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
Neko完成签到,获得积分10
2分钟前
fbwg完成签到,获得积分10
2分钟前
Johan完成签到 ,获得积分10
2分钟前
松柏完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370