Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision

计算机科学 光电探测器 神经形态工程学 铁电性 材料科学 计算机硬件 光电子学 人工神经网络 人工智能 电介质
作者
Boyuan Cui,Zhen Fan,Wenjie Li,Yihong Chen,Shuai Dong,Zhengwei Tan,Shuangshuang Cheng,Bobo Tian,Ruiqiang Tao,Guo Tian,Deyang Chen,Zhipeng Hou,Minghui Qin,Min Zeng,Xubing Lu,Guofu Zhou,Xingsen Gao,Jun‐Ming Liu
出处
期刊:Nature Communications [Springer Nature]
卷期号:13 (1) 被引量:93
标识
DOI:10.1038/s41467-022-29364-8
摘要

Abstract Nowadays the development of machine vision is oriented toward real-time applications such as autonomous driving. This demands a hardware solution with low latency, high energy efficiency, and good reliability. Here, we demonstrate a robust and self-powered in-sensor computing paradigm with a ferroelectric photosensor network (FE-PS-NET). The FE-PS-NET, constituted by ferroelectric photosensors (FE-PSs) with tunable photoresponsivities, is capable of simultaneously capturing and processing images. In each FE-PS, self-powered photovoltaic responses, modulated by remanent polarization of an epitaxial ferroelectric Pb(Zr 0.2 Ti 0.8 )O 3 layer, show not only multiple nonvolatile levels but also sign reversibility, enabling the representation of a signed weight in a single device and hence reducing the hardware overhead for network construction. With multiple FE-PSs wired together, the FE-PS-NET acts on its own as an artificial neural network. In situ multiply-accumulate operation between an input image and a stored photoresponsivity matrix is demonstrated in the FE-PS-NET. Moreover, the FE-PS-NET is faultlessly competent for real-time image processing functionalities, including binary classification between ‘X’ and ‘T’ patterns with 100% accuracy and edge detection for an arrow sign with an F-Measure of 1 (under 365 nm ultraviolet light). This study highlights the great potential of ferroelectric photovoltaics as the hardware basis of real-time machine vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
补喵发布了新的文献求助10
刚刚
aqaqaqa完成签到,获得积分10
刚刚
救救孩子救救孩子完成签到,获得积分10
1秒前
153495159应助长安宁采纳,获得10
1秒前
猫又完成签到,获得积分10
2秒前
夜如雨发布了新的文献求助10
2秒前
4秒前
不配.应助yyx采纳,获得60
5秒前
Lee发布了新的文献求助30
6秒前
爆米花应助秋水龙影采纳,获得10
6秒前
打打应助静俏采纳,获得10
8秒前
王也完成签到,获得积分10
8秒前
s可发布了新的文献求助20
9秒前
沉默的不惜完成签到,获得积分20
10秒前
Becky完成签到,获得积分10
11秒前
11秒前
11秒前
赘婿应助爱学习的鼠鼠采纳,获得10
12秒前
笑、完成签到,获得积分10
12秒前
尊敬的左蓝完成签到,获得积分10
13秒前
Sherlock完成签到,获得积分10
13秒前
13秒前
15秒前
简单十三发布了新的文献求助10
15秒前
风险事件完成签到,获得积分10
16秒前
Jasper应助桂花乌龙采纳,获得30
16秒前
16秒前
学术智子完成签到,获得积分10
16秒前
刮风这天完成签到,获得积分10
18秒前
uuuu发布了新的文献求助10
18秒前
XYWang发布了新的文献求助10
18秒前
顺利玫瑰关注了科研通微信公众号
19秒前
完美世界应助香蕉子骞采纳,获得10
20秒前
麻辣香锅应助cmccs采纳,获得50
20秒前
大胆的小懒猪完成签到,获得积分10
20秒前
Alerina完成签到,获得积分10
21秒前
壮观的衫完成签到,获得积分10
22秒前
23秒前
美满的小蘑菇完成签到 ,获得积分10
24秒前
姜玲完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155652
求助须知:如何正确求助?哪些是违规求助? 2806900
关于积分的说明 7870998
捐赠科研通 2465170
什么是DOI,文献DOI怎么找? 1312153
科研通“疑难数据库(出版商)”最低求助积分说明 629913
版权声明 601892