Fourier transform near-infrared spectroscopy coupled with variable selection methods for fast determination of salmon fillets storage time

偏最小二乘回归 特征选择 化学 变量消去 傅里叶变换 选择(遗传算法) 生物系统 傅里叶变换红外光谱 特征(语言学) 变量(数学) 统计 分析化学(期刊) 模式识别(心理学) 人工智能 数学 色谱法 光学 计算机科学 数学分析 物理 推论 生物 语言学 哲学
作者
Peng Li,Junchao Ma,Nan Zhong
出处
期刊:Journal of Molecular Structure [Elsevier BV]
卷期号:1264: 133223-133223 被引量:16
标识
DOI:10.1016/j.molstruc.2022.133223
摘要

To address the fast and nondestructive determination of salmon fillets storage time associated with its freshness, Fourier transform near-infrared (FT-NIR) spectroscopy coupled with advanced variable selection methods was attempted in this work. Fresh salmon fillets were divided into three groups and stored at -18℃, 4℃ and 20℃, respectively. The spectra under each temperature were collected by a FT-NIR spectrometer with the range of 4000–11000 cm−1. Advanced variable selection methods, including random frog (RF), successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), CARS combined with SPA (CARS-SPA) and variable combination population analysis combined with iteratively retaining informative variables (VCPA-IRIV), were utilized to extract key feature variables and shrink variable space. The prediction models were constructed by using partial least squares regression (PLSR) based on full spectral variables and selected feature variables. Variable selection method VCPA-IRIV coupled with PLSR (VCPA-IRIV-PLSR) showed the best prediction performance in each temperature, with determination coefficients of prediction set (R2P) of 0.9988, 0.9976 and 0.9998, and root mean square error of prediction set (RMSEP) of 0.145, 0.209 and 0.024 for -18℃, 4℃ and 20℃, respectively. The overall results showed the great feasibility of FT-NIR combined with variable selection methods in the rapidly, nondestructively and accurately predicting freshness of salmon fillets stored at different temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zwy109发布了新的文献求助10
1秒前
wanci应助杰卿采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
只道寻常完成签到,获得积分10
1秒前
ZJPPPP应助科研通管家采纳,获得10
1秒前
kluberos关注了科研通微信公众号
1秒前
hby完成签到,获得积分10
1秒前
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
山山而川完成签到,获得积分10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
耍酷小贾完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
乌冬面发布了新的文献求助10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
聪慧小霜应助科研通管家采纳,获得30
3秒前
sxr完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
上官若男应助我迷了鹿采纳,获得10
4秒前
4秒前
英俊的铭应助cute666采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得20
4秒前
ding应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646