Fourier transform near-infrared spectroscopy coupled with variable selection methods for fast determination of salmon fillets storage time

偏最小二乘回归 特征选择 化学 变量消去 傅里叶变换 选择(遗传算法) 生物系统 傅里叶变换红外光谱 特征(语言学) 变量(数学) 统计 分析化学(期刊) 模式识别(心理学) 人工智能 数学 色谱法 光学 计算机科学 数学分析 物理 推论 生物 语言学 哲学
作者
Peng Li,Junchao Ma,Nan Zhong
出处
期刊:Journal of Molecular Structure [Elsevier]
卷期号:1264: 133223-133223 被引量:16
标识
DOI:10.1016/j.molstruc.2022.133223
摘要

To address the fast and nondestructive determination of salmon fillets storage time associated with its freshness, Fourier transform near-infrared (FT-NIR) spectroscopy coupled with advanced variable selection methods was attempted in this work. Fresh salmon fillets were divided into three groups and stored at -18℃, 4℃ and 20℃, respectively. The spectra under each temperature were collected by a FT-NIR spectrometer with the range of 4000–11000 cm−1. Advanced variable selection methods, including random frog (RF), successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), CARS combined with SPA (CARS-SPA) and variable combination population analysis combined with iteratively retaining informative variables (VCPA-IRIV), were utilized to extract key feature variables and shrink variable space. The prediction models were constructed by using partial least squares regression (PLSR) based on full spectral variables and selected feature variables. Variable selection method VCPA-IRIV coupled with PLSR (VCPA-IRIV-PLSR) showed the best prediction performance in each temperature, with determination coefficients of prediction set (R2P) of 0.9988, 0.9976 and 0.9998, and root mean square error of prediction set (RMSEP) of 0.145, 0.209 and 0.024 for -18℃, 4℃ and 20℃, respectively. The overall results showed the great feasibility of FT-NIR combined with variable selection methods in the rapidly, nondestructively and accurately predicting freshness of salmon fillets stored at different temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
菠萝炒饭发布了新的文献求助30
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
小金佛完成签到,获得积分10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
amlzh应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
4秒前
怡然依萱发布了新的文献求助10
5秒前
爆米花应助神勇友灵采纳,获得10
5秒前
美丽的诗珊完成签到 ,获得积分10
5秒前
99关闭了99文献求助
5秒前
5秒前
冷傲书雪发布了新的文献求助10
5秒前
5秒前
田小姐完成签到,获得积分10
6秒前
太白完成签到,获得积分10
7秒前
7秒前
lbc发布了新的文献求助10
9秒前
9秒前
赘婿应助白华苍松采纳,获得10
10秒前
10秒前
10秒前
知止完成签到,获得积分10
11秒前
田様应助SWL采纳,获得10
11秒前
hey发布了新的文献求助10
11秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415318
求助须知:如何正确求助?哪些是违规求助? 3017180
关于积分的说明 8879884
捐赠科研通 2704761
什么是DOI,文献DOI怎么找? 1483001
科研通“疑难数据库(出版商)”最低求助积分说明 685630
邀请新用户注册赠送积分活动 680604