Autonomous Recognition of Multiple Surgical Instruments Tips Based on Arrow OBB-YOLO Network

最小边界框 计算机视觉 计算机科学 人工智能 机器人 跳跃式监视 可视化 图像(数学)
作者
Jianqing Peng,Qihan Chen,Liang Kang,Haiqing Jie,Han Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-13 被引量:24
标识
DOI:10.1109/tim.2022.3162596
摘要

In surgery, the robot can automatically adjust the endoscope to ensure the stability of the surgical image and reduce the burden on the doctor. It is becoming a research hotspot of current surgical assistance. The identification and localization of endoscopic instruments tips is the key to achieve efficient "doctor–robot" collaboration. However, traditional methods have the problems of poor real-time performance and insufficient information expression. This article proposes an autonomous recognition of multiple surgical instrument tips based on arrow object bounding box (OBB)-YOLO network prediction, the proposed method not only realizes the recognition and localization of key parts of the instrument, but also uses arrows to enhance the expression of critical information such as the tip angle under the premise of meeting the real-time requirements for medical scenes. First, based on the modified YOLOv3 model, the Arrow OBB-YOLO network used to predict Arrow OBB is built, and the arrows are constrained inside the bounding box (BB) through coordinate transformation. Second, the optimization expression of arrow errors can enhance the prediction effect of the model, and the designed step-by-step training optimization method significantly accelerates the convergence speed of the model. Then, based on the Arrow OBB model, a method for generating the tracking areas is proposed. Finally, the experimental results show that the proposed method can accurately identify and locate the tips of the instrument with 36.5 fps and can improve the recognition effect of the BB when adding new information expression, which lays the foundation for "doctor–robot" collaborative surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweety完成签到 ,获得积分10
刚刚
hanguyu发布了新的文献求助10
1秒前
Reborn应助zgnb采纳,获得10
1秒前
1秒前
慕青应助迷路的半双采纳,获得10
1秒前
Zhu完成签到 ,获得积分10
2秒前
CC完成签到,获得积分10
2秒前
4秒前
海狗发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
初宏翔发布了新的文献求助10
7秒前
Brave_1完成签到 ,获得积分10
8秒前
离枝发布了新的文献求助10
8秒前
8秒前
大力的汉堡完成签到,获得积分10
8秒前
8秒前
9秒前
WWW完成签到,获得积分10
9秒前
QZZ发布了新的文献求助10
10秒前
海风吹发布了新的文献求助10
10秒前
三七发布了新的文献求助10
10秒前
11秒前
11秒前
秒秒发布了新的文献求助10
11秒前
英姑应助鲸落采纳,获得10
11秒前
wyf关注了科研通微信公众号
12秒前
田様应助o10采纳,获得30
12秒前
高兴孤云发布了新的文献求助10
12秒前
小铭完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
LEETHEO完成签到,获得积分10
14秒前
D&L发布了新的文献求助30
14秒前
Shine完成签到 ,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792